

SPIRE Line Fitting using a script

Ed Polehampton On behalf of the SPIRE ICC

- See SPIRE Data Reduction Guide 6.2.6. Spectral Analysis
- Advantage of SPIRE fitting many lines together
- Considerations in SPIRE line fitting:
 - Local Standard of Rest correction is not applied by the pipeline

HIPE product metadata name	FITS header variable	Example value	Definition
velocityDefinition	VELDEF	'RADI-LSR'	The velocity definition and frame
radialVelocity	VFRAME	21.08429538498	Spacecraft velocity in units of [km s ⁻¹] along the line of sight of the telescope wrt the local standard of rest

 Unapodized data contains the most spectral information – should be fitted with a Sinc function:

 $f(x:p) = p_0 \sin([x - p_1]/p_2) / ([x - p_1]/p_2)$

• Apodized data can be fitted with a Gaussian

(but can overestimate true flux by up to 5%)

 Conversion from wavenumber to frequency can be done inside Hipe

using a rounded value of c **does** make a difference!

 In general the line width should be fixed (except for galaxies with partially resolved lines)

Multiple Line Fitting Script in Hipe

SpireSpectrumFitterDemo.py

SPIRE

Result of running the script for NGC7027:

Plot of data, fit & residual with lines marked

Text file containing line name, rest freq, fitted freq & integrated flux

emacs@SSTDLETP	
File Edit Options Buffers Tools Help	
CI3P13P0 492.161 491.99491209897724 4.3257603938655746E-17	
CO43 461.041 460.99752299769864 6.102394889965801E-16	
13C054 550.926 550.7495240681887 4.367766445955198E-17	
o-H20110101 556.936 556.868648654039 1.7443826809886026E-1	7
CO54 576.268 576.2846275266446 8.799981932854693E-16	
13CO65 661.067 661.0954174663423 4.7773813612798774E-17	
CO65 691.473 691.4112915588944 1.1851471814264613E-15	
p-H2O2112O2 752.033 751.1564599745309 8.382138537692064E-10	3
13C076 771.184 771.0642449917533 7.250439315410417E-17	
CO76 806.652 806.6044751438731 1.6917265917148065E-15	
CI3P23P1 809.342 809.1308114264003 1.3171178967766926E-16	
13C087 881.273 881.2387469061148 8.4104695458921E-17	
CO87 921.8 921.7249328740388 2.225383818517116E-15	
p-H2O2O2111 987.927 987.0643903719049 1.237071130900598E-1	7
13C098 991.329 991.314366661258 9.050987931625233E-17	
p-H2O2O2111 987.927 987.1175181212849 2.2305029737315664E-	17
13C098 991.329 991.244083578513 8.53440988572154E-17	
CO98 1036.912 1036.8415895973876 1.9593248269541595E-15	
o-H2O3123O3 1097.365 1096.7641969341844 1.037783087898636E	-17
13C0109 1101.35 1101.3113971979838 6.67174814523376E-17	
p-H20111000 1113.343 1113.294334000571 3.143223522605792E-	17
CO109 1151.985 1151.8865645897765 2.107050927304347E-15	
o-H20321312 1162.912 1163.5857515808027 8.31712116984742E-	18
p-H20422413 1207.639 1210.6265365674228 -3.934676726638437	5E-17
- 13C01110 1211.33 1211.0867392501557 8.447698341801418E-17	
p-H2O22O211 1228.789 1228.917841304385 3.3711087368569504E	-17
CO1110 1267.014 1266.9249558988975 2.170848988287318E-15	
13C01211 1321.265 1321.2899330252326 3.463134661384508E-17	
CO1211 1381.995 1381.8995504349425 2.124598797621145E-15	
o-H2O523514 1410.618 1409.7313033253376 -4.522704928162886	E-18
13C01312 1431.153 1430.9431185667725 3.460430004269E-17	
NII3P13P0 1461.13 1461.0534004240335 5.866569554676076E-17	
CO1312 1496.923 1496.8474775132534 2.0697764388681177E-15	

- Line fitting code being developed in **IDL** at **University of Lethbridge** (for SPIRE and JCMT FTS2)
- Iterative line fitter in IDL developed at **Cardiff University**