SPIRE Spectrometer expert provided data products

Rosalind Hopwood
SPIRE Instrument and Calibration Scientist
26th October 2016

Exploiting the Herschel Science Archive
• Standard pipeline products: SPGs, a recap
 Detailed in “SPIRE Spectrometer pipeline products”

• Highly Processed Data Products: HPDPs
 e.g. background subtracted spectra

• Ancillary data products: ADPs
 e.g. mission logs, trend analysis plots

• User Provided Data Products: UPDPs
 A brief note

• Summary of product availability status
Standard Product Generation (SPG)
A recap

- SPGs are products generated by the instrument pipelines
 - this is an automatic and generic process
 - for the Spectrometer the processing and calibration used depends on observing mode and resolution only
 - there is no fine tuning

- **HIPE 14.1** SPGs use the final *and best* SPIRE calibration

- The products are available in the HSA and the Herschel Science Archive Inter-Operability Subsystem: HAIO

- All processing levels and necessary auxiliary and calibration products are available for reprocessing the data

 Although running the pipeline is only possible within HIPE

- SPG science-readiness details are in the presentation

SPIRE Spectrometer SPG Products
Highly-Processed Data Products (HPDPs)

- Created by instrument experts
- soon to be available in the HSA
- Described and listed here:

 http://www.cosmos.esa.int/web/herschel/highly-processed-data-products

(Although the claim all SPG products can be significantly improved by processing them further is somewhat overstating things)

HPDPs improve on SPG products that are not science ready
HPDPs planned for the SPIRE Spectrometer

1. Spectra corrected for **source size** or **pointing** using SECT

![Graph showing flux density vs frequency for different beam sizes](image)

Flux loss in less pronounced for SLW due to its larger beam

After correction there is good agreement between SLW and SSW

Flux loss in SSW for a semi-extended source calibrated as a point source

WHY PROVIDE THESE?

- the Semi-Extended Correction Tool (SECT) is currently only implemented in HIPE
Beyond the SPG

Expert provided data products

HPDPs planned for the SPIRE Spectrometer

2. Spectra of point-like sources corrected for **extended background**

Extended background + point-source calibration = distorted continuum

There is less distortion seen for SSW due to its relatively smaller beam size

After correction there is good agreement between SLW and SSW

WHY PROVIDE THESE?

- Visual inspection of the spectra and associated PACS maps is required
 - *the approach cannot be automated*
- But therefore it is a subjective process and their use needs consideration

See the release note for all the details: [Background subtracted HPDP release note](#)
HPDPs planned for the SPIRE Spectrometer

3. Anomalous data correction
 • isolated cases of failed processing due to some on-board anomaly
 • removal of bad scans or detectors from observations
 Spectral cubes projected with degraded scans removed
 • Bumpy HR SLW spectra that can be empirically corrected following the same method as for LR data
 • SLW flux droop

WHY PROVIDE THESE?
 • Expert processing is required
 • Some fixes happen way up the pipeline stream
 • the tasks to best analyse and fix exist in HIPE

 a tall order for the non-calibration-specialist non-HIPE-using
HPDPs planned for the SPIRE Spectrometer

4. The **SPIRE FTS Spectral Feature Finder (FF) products**
 - the FF detects significant feature and estimates SNRs
 - the products per obsid
 - a catalogues of features with SNR \geq 5
 - fitted continuum parameters
 - a postcard per obsid
 - plus one searchable combined catalogue

WHY PROVIDE THESE?
- The sinc-like line profile + asymmetry == tough job

BUT
- this is a blind detection process
- No line flux is provided
- SPG products are used

So the FF is a starting point for your own direct inspection and analysis of the data
HPDPs planned for the SPIRE Spectrometer

4. The SPIRE FTS Spectral Feature Finder (FF) products e.g. 1

CRL 618 Observation ID 1342268302; (27/30)
4. The SPIRE FTS Spectral Feature Finder (FF) products e.g. Beyond the SPG

HPDPs planned for the SPIRE Spectrometer

CRL 618 Observation ID 1342268302; (16/19)
HPDPs planned for the SPIRE Spectrometer

4. The SPIRE FTS Spectral Feature Finder (FF) products e.g. 2

CW Leo Observation ID 1342197466; (37/47)
Beyond the SPG
Expert provided data products

HPDPs planned for the SPIRE Spectrometer

4. The SPIRE FTS Spectral Feature Finder (FF) products

![Graphs showing spectral features in GHz frequency range]
HPDPs planned for the SPIRE Spectrometer

5. Unaveraged point-source calibrated spectra: a UPDP

- The spectral scans have been averaged in the final SPG product

WHY PROVIDE THESE?

- The pipeline must be re-run in HIPE
- The data is averaged using a simple mean, so you might want to try other methods of combining the scans and/or omit outlying scans
- You might want to perform statistical analysis on the scans

WHY ARE THESE UPDPs?

- They are seen as less processed than the SPG results, so not highly processed
Ancillary Data Products (ADPs)

Ancillary Data Products (ADPs)

• Preserved
 • because they may be needed by users of the archive
 • as a source of information for future missions

Planned SPIRE Spectrometer related ADPs:

• Calibration: Uranus (prime calibrator), other planets and asteroid models
• Software: on-board software images and release notes
• Observatory: uplink-related products (mission database, etc)
• Engineering: trend-analysis and health monitoring data from the instrument “HouseKeeping” (e.g. telescope temperature)
• Historical: Telemetry and Science data from pre-launch test campaign
• Documents: 1000s of documents you will likely never want to read, but somewhere in the depths of HELL might be exactly the solution to your spectral problem!
User-Provided Data Products (UPDPs) - A note

User Provided Data Products are thin on the ground for the Spectrometer, so briefly:

- There are two Spectrometer UPDPs available
- One advises in the accompanying release note
 - “Anyone desiring a more uniformly processed data set is encouraged to start with the products from the HSA, which can be compared with the data in this release for reference.”
 - Which is sage advice
- More UPDPs may join these two in the future, so if you do want to recreate someone else’s published results, it’s worth checking the [UPDP page at the Herschel Science Centre](#)
- The quality of a UPDP is not checked before they are ingested so they do need careful inspection and comparison to HIPE 14.1 processed data
SPIRE Spectrometer Product availability

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Product Description</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPG</td>
<td>Pipeline products</td>
<td>✔</td>
</tr>
<tr>
<td>HPDP</td>
<td>Spectra corrected for source size</td>
<td>February 2017</td>
</tr>
<tr>
<td>HPDP</td>
<td>Background subtracted spectra</td>
<td>December 2016</td>
</tr>
<tr>
<td>HPDP</td>
<td>Anomalous data correction</td>
<td>February 2017</td>
</tr>
<tr>
<td>HPDP</td>
<td>FTS Spectral Feature Finder</td>
<td>February 2017</td>
</tr>
<tr>
<td>UPDP</td>
<td>Unaveraged spectra</td>
<td>December 2016</td>
</tr>
<tr>
<td>ADP</td>
<td>Herschel legacy products</td>
<td>December 2016</td>
</tr>
</tbody>
</table>