TWiki> Public Web>PacsCalibrationWeb (revision 158)EditAttach

PACS instrument and calibration web pages


Introduction

This page provides up-to-date information, documents, reports, and links about the PACS instrument, from preparing observations, through reducing and calibrating PACS observations, to working with PACS maps and cubes.

You can also consult the PACS NHSC homepage.

NEW NEW NEW Latest and Coming Updates (10-Jan-2017)

  • SPG 14.2.2 products have been generated. This was the final bulk processing of PACS data, fixing the following issues with the previous version:
    • the Level 2.5 for all unchopped range scans: previously the Level 2.5 were created incorrectly
    • the Level 3 for all chop-nod pointed range scans: this is being done to have a correct "ObservationSummary" included in the observation dataset, however the data themselves will be no different as the has not changed
    • a few spectroscopy observations (1342247513, 1342246558,1342225987, 1342225145, 1342225789, 1342247790)
  • HIPE 15 has been released. There are almost no differences in the data reduction software compared to HIPE 14.2:
    • for the spectroscopy interactive pipeline scripts, one task has been added which changes the values of two meta data: centreRaDecMetaData, which sets the "ra" and "dec" meta data to the centre of the cube's field for each cube created, independently; it does not change the data or coordinates of the cubes.
    • new aperture corrections have been added to the calibration tree (photometry), for the prime and parallel modes at the 20 and 60 arcsec/s speeds; the difference in the corrections wrt previous versions (where only the 20arcsec/s corrections were provided) are negligible for apertures of 2*FWHM (of the beam) but larger for smaller apertures.
    • additional documentation has been added to the PDRG for photometry on extracting uncertainties from scan maps (chp. 4)
    • the PACS Products Explained includes information about which files to grab directly from HSA tarball downloads (rather than via HIPE), and has a new short chapter on recommendations for different science cases
  • Due to a bug fixed in the 6.4.4 Unimap release within 14.2.1, the values of some Unimap parameters were modified for a small set of observations in the SPG 14.2.1 processing.
  • The forward modelling tool (FMT). This tool is to be used with PACS spectroscopy observations of objects which are extended but not flat over the observed field. It is to be used to estimate the correction to the fluxes necessary to account for the uneven illumination of the FoV by the PACS integral field unit (i.e. the gaps between the spaxels). See the Data Reduction section for more information.

Observing with PACS

The relevant documentation to read before working on PACS data for the first time are the following:

  • The PACS Observer's Manual HTML PDF (11 Mb), version 2.3, 8-June-2011 : it tells you how the instrument works including:
    • A description of the layout and the components of the PACS photometer and spectrometer
    • A description of the scientific capabilities of the instrument: spectral response functions, sensitivity values, point spread functions, astrometric accuracy, flux calibration information
    • A description of the standard observing templates used to set up PACS observations; here you can also find the various acronyms that are used in the PACS data reduction guides
    • A brief description of PACS data products
  • AOT Release Notes: dedicated release notes per AOT (the astronomer's observing template, i.e. the observing time planning).
    • Information about how the various standard observing blocks work
    • Summaries of transmission functions, sensitivity, etc. for use in your observing planning (similar to what you will find in the Observer's Manual)
    • Here you can also find the various acronyms that are used elsewhere in PACS documentation
  • The PACS fact sheet
  • A collection of Key information of PACS is provided on the NHSC web site.
Although we are now in the post-operations phase of the mission, the PACS OM and the AOT release notes can still be useful to read for a background understanding on how PACS data were gathered.

The in-flight scientific capabilities of the PACS instrument are also given in the publication:

PACS calibration and performance

Photometer calibration in scan maps

  • Point Spread Function/Encircled Energy Fraction : PACS Photometer Point Spread function (10 Mb), version 2.2, 16 November 2015. A detailed document of the in-flight observed PSF and of the derivation of the EEF curves. The accompanying TAR file can be downloaded here (79 MB). It contains the Vesta PSFs FITS files and the EEF tables for all the scanning modes.
  • Herschel/PACS modelled point spread functions (3.1 Mb) is a related document presenting Zemax modelled point spread functions for both an `ideal' and an 'as built' Herschel telescope model. Tarballs with corresponding broad-band and monochromatic PSFs for these two cases are at http://pacs.ster.kuleuven.ac.be/pubtool/PSF. These are useful in addition to the observed PSFs but cannot replace them, since the models do not capture all effects found in the observed PSFs.
  • Point-source photometry: PACS uses 5 stars as primary calibrators with fluxes ranging from 0.6 to 15 Jy, plus fainter stars and asteroids as secondary calibrators. The absolute flux scale accuracy is dominated by the model uncertainties and amounts to 5% in the 3 filter bands. At the same time, the reproducibility for a given non-variable point source is better than 2% for all PACS bands. The flux calibration is described in detail in Balog et al, 2013, Experimental Astronomy and confirmed with asteroids in Müller et al., 2013, Experimental Astronomy.
  • Point-source photometry in deep PACS maps/surveys: The e ffect of the high-pass fi lter data reduction technique on the PACS Photometer PSF, point-source photometry, and noise has been investigated in depth in this technical note.
  • Colour corrections:
  • Extended emission photometry: Three technical reports which assess the extended emission (or surface brightness) measured from PACS data and compare that to IRAS and Spitzer/MIPS data:
  • Chop/nod observations:
    • Chop/nod observations were not used for scientific observations during the mission, however they were heavily used for the photometry monitoring and well as numerous observations for the pointing accuracy check/monitoring. See Nielbock et al., 2013, Experimental Astronomy for the time dependent flux calibration for the PACS chopped point-source photometry AOT mode.

Photometer map-makers

Four fundamentally different map-makers are offered in HIPE 14 with interactive pipeline scripts, starting from Level 1. These map-makers are used in different ways to generate standard products ("SPG" product) provided by the Herschel Science Archive. High-pass filtering is applied to generate Level2 products, while Level2.5 products are generated by combining pairs of observations acquired in the scan plus cross-scan mode, using the Unimap, JScanam, and High-pass filtering mappers. Level3 products are mosaics of Unimap and Jscanam Level2.5 products that belong to the same sky field and to the same observing program.

  • Highpass filtering branch, where the bolometer timelines are high-pass filtered to remove the 1/f noise, but at the expense of extended emission.
  • JScanam, a Java-version of the IDL Scanamorphos map-maker, an IDL map-maker from Hélène Roussel (IAP), with an advanced and powerful destriper for PACS maps
  • Unimap, a GLS (generalised least square) map-maker from Lorenzo Piazzo ('La Sapienza' University of Rome) running under a free Matlab runtime environment. It performs an advanced pre-processing (calibration blocks detection, deglitching, drift correction, jump detection), it implements the pixel noise compensation into the GLS algorithm and it provides post-processing stages. The runUnimap task is used to invoke the Unimap Matlab routine on the users's computer
  • MADmap, a GLS (generalised least square) map-maker, a GLS map-maker that is not used anymore in the SPG processing, but it is still available as an interactive script
Highpass filtering provides optimum sensitivity to point-sources while JScanam, Unimap and MadMap mappers all clean the dataset of systematic effects and remove the correlated 1/f noise, preserving at the same time the sky signal over large spatial scales. They are suited for analysing both point sources and extended emission.

  • A report of the map-making working group compiled by Roberta Paladini is available: PACS map-making tools: analysis and benchmarking, 1 Nov. 2013.
  • An updated version of that report, concentrating on JScanam, MADmap and Unimap in their latest versions is available: PACS map-making tools: analysis and benchmarking, 30 March 2014.
  • If you are using data with SPG v 12 or lower, or reducing data with HIPE 12 or lower, remember that the optical field distortion in not applied at level 1. As a result, external map-makers starting from level 1 have a systematic flux overestimate of 6-7% in the red channel and a lower underestimate (~2%) in the blue channel of the flux scale. From HIPE 13/SPG 13 onwards, this has been corrected.
  • Links:

PACS spectrometer calibration

  • The PACS Spectrometer pipeline science-ready data (Level2/Level2.5) are calibrated for extended emission.
  • The calibration of the spectrometer is based on repeated measurements of planets, asteroids, and stars.
    • Telescope background model for chop nod: a script to compute the telescope background model calibration tables and a technical note explaining the method used can be found here. Warning: the calibration tables computed with this script are not the same as the ones in the calibration tree. See the technical note for details.
  • Point source observations. To extract and calibrate the spectrum of a point source, it is necessary to use one of the tasks provided: it is not enough to add up the field-of-view of use the central spaxel only. How to do this is documented in the PACS DRG for spectroscopy.
  • PACS Spectrometer performance and calibration: NEW The PACS Spectrometer Calibration Document v3.0 (7-July-2016) provides details on the calibration accuracy and the necessary information to optimally interpret PACS spectroscopy observations.
    • Info Calibration accuracies:
      • The absolute flux error of >100 measurements of different calibration sources is ±6-12% in all bands, with a systematic error below ±1%. Continuum flux reproducibility from observations on HD 161796 is estimated at ±15% (peak-to-peak).
      • Relative flux accuracies within a PACS-S spectral band are:
        • chop nod (Telescope background normalisation): ±5% up to 150 μm, and ± 10% beyond
        • unchopped (calBlock + RSRF): ±10% for all wavelengths
  • An explanation of the data errors for any particular observation is provided in the PACS Data Reduction Guide for spectroscopy (sec. 7.6)
  • PACS spectrometer beams: The PACS spectrometer beam efficiencies are maps of the response of each detector on the sky. They describe the (relative) coupling of a point source to each spaxel as a function of its (the source) position in the FOV.
    • Version 6, the most up-to-date, can be directly downloaded as a tar ball PCalSpectrometer_Beam_v6.tar.gz. The calibration files are named BeamsPerSpaxelXXX, depending on the [XXX] band.
    • The PACS beam efficiencies are based on Neptune raster maps at certain (14) wavelengths observed during the mission:
      • Coarse 25x25 raster maps with raster step size 2.5" were obtained between ODs 174 and 751 in chopped mode covering all 25 spaxels.
      • Fine Neptune 5x5 raster maps with raster step size 2” were executed on ODs 1311 and 1312. The combination of four such fine rasters, offset by 1", provide very high sampling but for the central spaxel beam efficiency only.
      • All these measurements were registered using least squares minimisation in coordinates and gain, and a synthetic beam was constructed with the coarse raster outside the area covered by fine raster and from matched fine raster inside. Finally, this synthetic beam is interpolated into a 0.5" grid.
      • All raster maps were observed with only one chop-off position (aka, asymmetric chopNod).
    • Beam efficiencies are normalised so that a point source of flux 1 at the centre of spaxel 12 has an integral of the instrument response equal to 1.
    • The WCS associated with the beam is in sky coordinates for position angle 0.
    • A full history of the PACS spectrometer beam efficiencies versions can be found in PACSSBeamEfficienciesControlVersion.pdf
    • The raw data from which the PACS spectrometer beams (all versions) were derived are also available as tables (y, z offset - signal):
      • SpecSpatial_BeamEfficiency_central_spaxel_tables_v1.tar.gz: This contains a FITS file for each wavelength measured for the central spaxel only. Raw data of the coarse and fine rasters are combined. The array dimension of the fits file is [3,npoints] where the first column gives the y raster position, the 2nd column the z raster position and the 3rd column the normalised flux measured at this raster position.
      • SpecSpatial_BeamEfficiency_tables_v1.tar.gz: Raw measurements PACS beams - all spaxels, coarse raster measurements only: each fits files corresponds to one wavelength. Each file contains the data for all spaxels of the coarse raster measurement only. Each fits file holds an array of 3x25x25x25 where: (0,25,25,25)=y raster position, (1,25,25,25)=z raster position, (2,25,25,25)=flux normalised to the central spaxel. The second and third dimensions are the raster position indices (y and z) and the last dimension is the module number (=spaxel number).

PACS calibration file versions

  • When starting HIPE, you will be informed if new calibration files are available. Clicking on show details will show you the release note of the new calibration set, with details about the changes. This is further explained in the PDRGs. Clicking on Install will install the latest calibration files.
  • You can inspect the release notes for the calibration sets installed on your machine from within HIPE. Open the Calibration Sets View from the menu Window -> Show Views -> Workbench.
  • The history of the calibration files that have been released to the community is provided here: PACS Calibration File History. With the release of HIPE 15 (early 2017) and the final SPG processing of 14.2 (earlier 2017), no more changes to the calibration tree will be made.

Reducing PACS data

Standard Products

The Herschel Science Archive provides bulk-processed Level 2/2.5 products for photometry and spectroscopy.

  • All observations will be processed to Level 2. The pointed chop-nod observations for which the full SED is covered by 2 (or more) observations will also have a Level 3 (see for a list of these observations). The unchopped range scan on-source observations for which an off-source observation was requested will have a Level 2.5 that contains the background-subtracted results (see for a list of these observations, and the associated off-source obsid for any on-source obsid is given in the comments in the qualitySummary).
  • For some observations, one of the cameras (red or blue) may not have processed all the way to the final level due to data being out of the filter band borders: this is normal and a comment in the qualitySummary should say exactly that. Some observations will have failed in one camera but not another due to instrumental anomalies: again, a comment in the qualitySummary will explain what has happened.
  • This Data Processing Known Issues page describes typical problems and caveats the observer needs to be familiar when looking at the results of this "SPG" (standard product generation) processing. Aspects of product quality which can be further optimised by interactive processing are also summarised here. The document refers to the version of data processing pipeline currently being used for processing of incoming Herschel data.
  • For a explanation of PACS products, i.e. what you get when you download a complete or part of an observation from the HSA, see the Info PACS Products Explained, which can also be found on the HIPE help pages.
  • PACS data are reduced with pipeline scripts which are a set of command-line tasks that process the data from Level 0 (raw) to Level 2/2.5 (science-ready). There is more than one flavour of pipeline script, tailored to different types of science target, AOT, and observing plan. These 'interactive' pipeline scripts are provided in HIPE and explained in the data reduction guides.
  • The data you get from the the HSA will have been processed by the 'SPG' (Standard Product Generator) using one pipeline script flavour per AOT. Which script is used is documented in the PDRG.
  • The SPG scripts include all the stable pipeline tasks within those scripts, with task settings that correspond to the most common type of science target for each AOT. But some pipeline tasks still can only be run via the interactive pipeline scripts, and to modify the parameter settings for the important pipeline tasks also requires you re-process the data. The Launch Pads (see below) include a guide to understanding the pipeline scripts and how to decide whether to reprocess your data and if so, with which script.

AOT table for PACS spectroscopy

For any user of PACS data, it is necessary to have some information about the AOT -- the observing mode -- of the observation they are working on in order to know which of the SPG products to work with, which pipelines to use, and which calibration or other uncertainties to consider. All the relevant AOT details are held in the header keywords of the FITS files. Every FITS file in an HSA download has a complete copy of the keywords, and hence any Level >=2 product can be opened (e.g. in fv) to find the AOT. Tables containing the description of the AOT keywords can be found in the PACS Products Explained.

For photometry, almost all observations were of the scan-map mode and hence the same set of three maps are provided, where the key to knowing which to use is in the final chapter of the PACS Products Explained. For spectroscopy there were may more variations on the AOT: pointing mode, spectral mode, background sampling, type of mapping. In addition, the Level 2 and 2.5 products for spectroscopy are "sliced": each cube or table is for one wavelength range only, and the filenames differ only by an "s##" where more than one wavelength range was requested for that observation. This is also explained in the PACS Products Explained. In order to make it easier for an archive user to know, before having to open any FITS file, which FITS file they want, we have created a spreadsheet of AOT keyword data. In this table, you will find: the obsid; line/range spectroscopy; chop-nod or unchopped; pointed or mapping; if mapping, the raster details; the number of spectral lines or ranges requested or "sedxxx" to indicate that the observation is a full SED in the xxx band; line IDs given by the observer; and then four columns of slice number (the "s##" in the filename) and wavelength range: two columns (red and blue camera) for pointed observations where the search was done on the rebinned cube (one of the final products for this mode), and two columns (red and blue) for mapping observations where the search was done on the projected cubes (one of the final products for this mode).

All standard observations that processed to at least Level 2 in the SPG pipeline are included in this table.

Data reduction: HIPE, documentation, and useful links for data issues

HIPE (Herschel Interactive Processing Environment) is the tool used to inspect, reduce, and analyse Herschel data.

  • The recommended User Release HCSS (Herschel common science system) version that you should use for reducing PACS data is HIPE v15.0
  • In the CIB (continuous integration build) this version corresponds to Track 15, build 3244. The CIB is the continuously bug-fixed/upgraded/improved version of HIPE, which every few months (in the beginning of the mission) or yearly (in the post-operations phase) becomes a stable User Release.
  • Within HIPE you can access all the PACS data reduction documentation and the general HCSS and HIPE user documentation for Track 15 here. The documentation provided via HIPE opens in a web browser, but for those of you who prefer PDF, we include the PACS Data Reduction Guides as PDF files here (note that within the standalone pdf versions, external links will not work):
  • For HIPE 15 go to the HIPE 15 what's new page. Note that no bulk processing will be done with this HIPE release and the pipeline scripts are no different to those of HIPE 14, the only difference wrt HIPE 14.2.1 are some software improvements.
  • The Data products known issues page details issues about the pipelines or the data products that are known about and offers advice for dealing with them. Consult this if you encounter problems with your data to see if it has already been addressed.
  • Link to the General HCSS Public Twiki page (with general framework information and updates): http://herschel.esac.esa.int/twiki/bin/view/Public/WebHome

NEW FMT (forward modelling tool). Some information about this is provided in the spectroscopy PACS Data Reduction Guide. A quick summary is:

  • the FoV of the PACS integral field unit is not uniformly illuminated, which leads to some loss of light between the spaxels
  • for point sources and flat sources this does not matter -- the corrections applied by the pipeline (the point source corrections in extractCentralSpectrum, for example, and the extended source correction applied to all observations by the pipeline) account for this
  • for sources that are between a point and fully extended, for crowded fields, and for off-centred point sources, however, the fluxes in the final cubes of the pipeline will be incorrect

The FMT has been developed in HIPE 15 to estimate the degree to which the fluxes are incorrect for any observation. As this differs for each observation -- it depends on the surface brightness distribution of the source and the pointing pattern of the observation (pointed, Nyquist mapping, oversampled mapping, tiling...) -- the correction is unique to each observation. To use the FMT it will be necessary to run HIPE. The most important input is a model of the surface brightness distribution of your source at the wavelength(s) of the observation. With this input, the surface brightness distribution that would have been observed with a completely uniform illumination is estimated by running the pipeline on the model. This output can be compared to your data.

The FMT functionality is fully incorporated in HIPE 15, however it has not yet been tested on general users, and for this reason we recommend you to contact the Herschel helpdesk to ask for advice on running the code. In exchange for some one-on-one help, we would appreciate feedback on the scripts and the documentation provided in the FMT package.

Interactive pipeline scripts

  • The various interactive pipeline scripts PACS photometry and spectroscopy provide in HIPE can be seen as cookbooks, since they take you through each pipeline, task by task, explaining briefly what each task does, commenting on the more crucial pipeline tasks, and showing you how to plot, image, visualise and inspect your data as you work through the pipeline. An example public observation is included with each so you can test it out before using it on your data. These data reduction scripts are available in HIPE under the menu: Pipeline --> PACS --> Photometer/Spectrometer.
  • The PACS Launch Pads are taken from the first chapters of the respective PDRGs and are a useful quick-start guide to loading your data into HIPE, looking at them, and then what to know and do before you begin reprocessing your data with one of the pipelines. These can be gotten via HIPE itself or the links here (these are to the HIPE 15 versions, which are the same as the HIPE 14 versions)

Tutorials and scripts

  • The Scripts menu in HIPE takes you to a set of PACS photometry and spectroscopy useful scripts. In HIPE 14 these are:
    • Point source aperture photometry
    • Multiple point source aperture photometry
    • Image convolution (photometry)
    • Combine PACS and SPIRE point source spectra
    • Point source corrections: for a source located in the central spaxel of the field-of-view, and for a source located elsewhere
    • Post-processing tasks for extended sources
    • Off subtraction and post-processing for unchopped range spectroscopy
    • Fitting mapping observations: for mosaic cubes and on the pre-mosaic cubes
    • Fitting single pointing cubes
    • Re-creating the standalone browse products
    • Convolution for spectral images
  • See the various walkthroughs on the NHSC PACS page.
  • The Nasa Herschel Science center (NHSC) has also posted some PACS Data Processing Tutorials.
  • HIPE Academy on YouTube: here you can find recordings of various seminars and webinars that the HSC have given on working in HIPE, reducing Herschel data, using various tools to visualise and manipulate data in HIPE, and etc.

Quick links: wavelengths, sensitivity, PSFs

A summary of instrumental and calibration details that a data-reducing astronomer often wants know.

Spectroscopy

  • Wavelength ranges, resolution, band names
    • The blue bands are B2A (blue, second order) and B2B (green, second order), and B3A (blue, third order), and in the red we have R1 (first order)
    • The wavelength ranges and resolutions can be found in table 4.1 of the ( PACS Observer's Manual) * Spectral leaks: there is order leakage in our filters that affects the ends of the blue and red bands. These are documented as figures in sec. 4.1 of the PACS Spectrometer Calibration Document and again in sec. 4.8 of the PACS Observer's Manual. How to deal with the red leakage by reducing the data with a particular calibration file is documented in the PACS spectrometer data reduction guide (secs 5.4 and 6.4).
  • Second-pass spectral ghosts: see sec. 4.2 of the PACS Spectrometer Calibration Document to learn about ghosts. These are bright spectral lines at one wavelength "echoing" to another wavelength in another spaxel. This is also documented in sec. 4.9 of the PACS Observer's Manual * The footprint of the integral field unit: text and figures showing the footprint of the PACS IFU, and how that compares to the beam, can be found in the PACS Spectrometer Calibration Document (sec. 3) where you will also find information about the beam maps (at high spatial resolution and for various wavelengths), beam efficiencies, and the point source loss corrections. The same information can be found in the PACS Observer's Manual (sec. 4.6).
  • The FWHM of a point source (i.e. of the beam): this information can be found in fig. 4.12 of the PACS Observer's Manual and again in the PACS Spectrometer Calibration Document
  • Spectral line profile skews for off-centred sources: point sources that are not centrally located in a spaxel will show a skew to their spectral lines. The effect of this is to move the peak wavelength and slightly change the measured FWHM. Some calibration of this has been done and this can be found in sec. 4.7.2 and 4.7.3 of the PACS Observer's Manual and sec. 5.2 of the PACS Spectrometer Calibration Document.
  • Calibration certainties: these are all documented in the beginning of the PACS Spectrometer Calibration Document. Data errors are discussed in the PACS DRG for spectroscopy (sec. 7.6).
  • Expected signal-to-noise ratios and line sensitivity: this depends on the AOT, this information is also provided in the AOT Release Notes (see also update in sec. 6.1.3 of the PACS Observer's Manual) and can also be computed by running HSPOT.

Photometry

  • Filters and bands
    • The blue and green bands are not observed simultaneously, the red is observed simultaneously with each. Transmission functions can be found in the PACS Observer's Manual sec. 3.2.
  • PSF and beams: the beams maps are provided as FITS files, and information about then can be found in the section 'Photometer calibration in scan maps'
  • Point source photometry
    • Colour corrections: these are provided on this page in the section 'Photometer calibration in scan maps'
    • Aperture corrections/EEFs (encircled energy fractions) are provided in sec. 8 of the PACS Photometer Point Spread function document. See the section 'Photometer calibration in scan maps' on this page.
  • Effects of nonlinearity, saturation, stray light, crosstalk and ghosts: can be found in sec. 6 of the PACS Photometer Point Spread function document
  • Calibration certainty: is discussed on this page in the section 'Photometer calibration in scan maps', with links there to two publications. You can also read sec 3.3 of the PACS Observer's Manual
  • Sensitivity: this depends on the AOT, this information is also provided in the AOT Release Notes, and can also be computed by running HSPOT.

Topic attachments
I Attachment History Action SizeSorted ascending Date Who Comment
Unknown file formatgz PCalSpectrometer_Beam_v1.tar.gz r1 manage 85.7 K 2011-07-14 - 23:08 BartVandenbussche PACS Spectrometer beams
PDFpdf PACS_LaunchPads_May2012_P.pdf r1 manage 111.0 K 2012-05-25 - 14:28 KatrinaExter Photometry
Unknown file formatgz SpecSpatial_BeamEfficiency_central_spaxel_tables_v1.tar.gz r1 manage 120.9 K 2013-03-08 - 17:41 BartVandenbussche Raw measurements PACS beams - central spaxel only
Compressed Zip archivetar PACSPSF_PICC-ME-TN-033_EEF_v2.2.tar r1 manage 122.0 K 2015-11-19 - 08:51 LucaCalzoletti  
PDFpdf LPphot_HIPE14p2.pdf r1 manage 127.1 K 2016-07-08 - 10:29 KatrinaExter launch pads for 14.2
PDFpdf PACSSBeamEfficienciesControlVersion.pdf r1 manage 135.3 K 2016-01-08 - 16:34 ElenaPuga PACS Spectrometer beam efficiencies control version documentation
PDFpdf PACS_LaunchPads_May2012_S.pdf r1 manage 137.7 K 2012-05-25 - 14:28 KatrinaExter Spectroscopy
PDFpdf pacs_phot_LP15.pdf r1 manage 140.5 K 2016-12-19 - 12:48 KatrinaExter  
PDFpdf pacs-specLP-HIPE14.pdf r1 manage 210.0 K 2015-12-11 - 16:10 KatrinaExter  
PDFpdf LPspec_HIPE14p2.pdf r1 manage 213.8 K 2016-07-08 - 10:29 KatrinaExter launch pads for 14.2
PDFpdf pdrg_photLP_Hipe14.pdf r1 manage 251.8 K 2015-12-11 - 14:56 KatrinaExter  
PDFpdf pacs_spec_LP15.pdf r1 manage 257.7 K 2016-12-19 - 12:48 KatrinaExter  
PDFpdf PICC-CR-TN-044.pdf r1 manage 294.2 K 2013-05-09 - 15:01 BrunoAltieri The bandwidth of the PACS photometric system
Unknown file formatgz telescopeBackgroundInHipe.tar.gz r1 manage 369.2 K 2015-07-14 - 13:06 ChristopheJean File containing the script and the data files needed to compute the telescope background model calibration tables. A technical note is also included.
PDFpdf balog_PACS_Phot_ADS.pdf r1 manage 432.5 K 2013-11-04 - 23:50 BrunoAltieri Balog exp. astr. paper 2013
PDFpdf PDRG_Phot_May12.pdf r1 manage 471.2 K 2012-05-25 - 14:24 KatrinaExter PDRG Photometry for May 2012
PDFpdf Balog_ExpAstr_2013.pdf r1 manage 566.4 K 2014-03-11 - 17:39 BrunoAltieri Balog et al., 2013, Experimental Astronomy
PDFpdf ppe-hipe13.pdf r1 manage 811.9 K 2015-06-23 - 13:17 KatrinaExter PACS Products Explained document (pdf)
PDFpdf ExpAstr_PrimeAsteroids_revision1.pdf r1 manage 928.3 K 2013-11-04 - 23:51 BrunoAltieri Mueller exp. astr. paper 2013
Unknown file formatgz PCalSpectrometer_Beam_v2.tar.gz r1 manage 930.7 K 2012-01-16 - 12:49 BartVandenbussche PACS spectrometer beam effiencies, version 2
Unknown file formatcsv AOTMetaDataSpec.csv r1 manage 936.8 K 2017-02-17 - 12:38 KatrinaExter AOT related meta data for spec observations
PDFpdf PICC-NHSC-TN-029.pdf r1 manage 975.7 K 2011-04-12 - 18:30 BrunoAltieri  
PDFpdf ppe_Hipe14.pdf r1 manage 1193.9 K 2015-12-11 - 14:34 KatrinaExter  
PDFpdf PPE_HIPE14p2.pdf r1 manage 1306.8 K 2016-07-08 - 10:29 KatrinaExter PPE for 14.2
PDFpdf pacs_ppe15.pdf r1 manage 1354.2 K 2016-12-19 - 12:45 KatrinaExter  
PDFpdf Nielbock_ExpAstr_2013.pdf r1 manage 1464.5 K 2014-03-11 - 16:19 BrunoAltieri Nielbock et al., 2013, Experimental Astronomy
PDFpdf Mueller_ExpAstr_2013.pdf r1 manage 1512.3 K 2014-03-11 - 17:39 BrunoAltieri Mueller et al., 2013, Experimental Astronomy
PDFpdf PacsSpectroscopyPerformanceAndCalibration_v3_0.pdf r1 manage 1565.8 K 2016-07-08 - 15:46 ElenaPuga PACS Spectrometer Performance and Calibration Document v3.0
PDFpdf aa14535-10.pdf r1 manage 1571.0 K 2010-11-04 - 16:23 BrunoAltieri  
PDFpdf pacs_specLP_Hipe13.pdf r1 manage 1576.5 K 2015-04-09 - 13:28 KatrinaExter  
PDFpdf PhotMiniScan_ReleaseNote_20101112.pdf r1 manage 1988.8 K 2011-06-06 - 17:05 BrunoAltieri  
PDFpdf PacsSpectroscopyPerformanceAndCalibration_v2_4.pdf r1 manage 2056.7 K 2011-06-17 - 10:27 BartVandenbussche PACS spectrometer performance and calibration document, v2.4
PDFpdf pacs-spec-Hipe14.pdf r1 manage 2224.4 K 2015-12-11 - 14:27 KatrinaExter  
PDFpdf PacsSpectroscopyPerformanceAndCalibration_31May2011.pdf r1 manage 2329.4 K 2011-06-02 - 13:28 JeanMatagne  
PDFpdf pacs_spec_Hipe13.pdf r1 manage 2333.4 K 2015-04-09 - 13:17 KatrinaExter  
PDFpdf PDRGspec_HIPE14p2.pdf r1 manage 2365.0 K 2016-07-08 - 10:29 KatrinaExter PDRG phot and spec for 14.2
PDFpdf pacs_spec15.pdf r1 manage 2452.3 K 2016-12-19 - 12:44 KatrinaExter  
PDFpdf pacs_spec_Hipe12.pdf r1 manage 2545.7 K 2014-03-18 - 08:59 ElenaPuga PACS Spectrometer Data Reduction Guide for Hipe 12
PDFpdf cc_report_v1.pdf r1 manage 2578.7 K 2011-04-12 - 18:30 BrunoAltieri  
Unknown file formatgz SpecSpatial_BeamEfficiency_tables_v1.tar.gz r1 manage 2742.3 K 2013-03-08 - 17:43 BartVandenbussche Raw measurements PACS beams - all spaxels
PDFpdf pacs_mapmaking_report14_v2.pdf r1 manage 2811.1 K 2014-07-29 - 23:48 BrunoAltieri PACS Map-making Tools: Update on Analysis and Benchmarking
PDFpdf pacs_bolo_fluxcal_report_v1.pdf r1 manage 3122.3 K 2011-04-12 - 19:40 BrunoAltieri  
PDFpdf PACSPSF_PICC-ME-TN-029_v2.0.pdf r1 manage 3171.5 K 2010-11-05 - 16:28 BrunoAltieri  
PDFpdf ExtSrcPhotom.pdf r1 manage 3303.5 K 2011-04-12 - 18:26 BrunoAltieri  
PDFpdf pacs_photLP_Hipe13.pdf r1 manage 4729.2 K 2015-04-09 - 13:28 KatrinaExter  
PDFpdf pacs_phot_Hipe12.pdf r1 manage 5134.1 K 2014-03-17 - 17:50 BrunoAltieri PACS Data Redction Guide for Hipe 12
PDFpdf pacs_phot_Hipe13.pdf r1 manage 5136.2 K 2015-04-09 - 13:16 KatrinaExter  
PDFpdf SimulPSP_v1.0.pdf r1 manage 5323.7 K 2010-11-15 - 11:16 BrunoAltieri  
PDFpdf bolopsfv1.01.pdf r1 manage 5658.9 K 2010-11-05 - 16:27 BrunoAltieri  
PDFpdf PDRGphot_HIPE14p2.pdf r1 manage 5786.0 K 2016-07-08 - 10:29 KatrinaExter PDRG phot and spec for 14.2
PDFpdf pacs_phot15.pdf r1 manage 5820.3 K 2016-12-19 - 12:44 KatrinaExter  
PDFpdf hpf_psf_tn_final.pdf r2 r1 manage 6492.6 K 2012-11-14 - 18:06 BrunoAltieri Effect of high-pass filtering
PDFpdf PDRG_Dec2011.pdf r1 manage 6655.5 K 2011-12-07 - 10:05 KatrinaExter PDRG Track 8.0 RC6
PDFpdf pdrg_phot_Hipe14.pdf r1 manage 9052.2 K 2015-12-11 - 14:38 KatrinaExter  
PDFpdf bolopsf_20.pdf r1 manage 9635.3 K 2012-04-10 - 16:40 BrunoAltieri PACS photometer point spread function, v2.0
PDFpdf bolopsf_21.pdf r1 manage 9765.6 K 2015-06-08 - 21:42 BrunoAltieri PACS photometer point spread function, v2.1
PDFpdf bolopsf_22.pdf r1 manage 9768.7 K 2015-11-19 - 08:33 LucaCalzoletti  
PDFpdf pacs_mapmaking_report_ex_sum_v3.pdf r1 manage 9781.5 K 2013-11-04 - 23:49 BrunoAltieri mapmaking report
Unknown file formatgz PCalSpectrometer_Beam_v4.tar.gz r1 manage 13984.5 K 2014-05-22 - 16:23 BartVandenbussche PACS spectrometer beam efficiencies v4
Unknown file formatgz PCalSpectrometer_Beam_v6.tar.gz r1 manage 17187.8 K 2015-08-20 - 10:44 BartVandenbussche PACS spectrometer beam efficiencies v6
Unknown file formatgz PCalSpectrometer_Beam_v3.tar.gz r1 manage 17278.3 K 2013-03-05 - 15:06 BartVandenbussche PACS spectrometer beam efficiencies v3
Unknown file formatgz PCalSpectrometer_Beam_v5.tar.gz r1 manage 17293.7 K 2014-05-28 - 14:42 BartVandenbussche PACS spectrometer beam efficiencies v5
Compressed Zip archivetar PACSPSF_PICC-ME-TN-033_PSFpara_v2.2.tar r1 manage 27997.5 K 2015-11-19 - 10:55 LucaCalzoletti  
Compressed Zip archivetar PACSPSF_PICC-ME-TN-033_PSFprime_v2.2.tar r1 manage 49737.0 K 2015-11-19 - 11:11 LucaCalzoletti  
Edit | Attach | Watch | Print version | History: r162 | r160 < r159 < r158 < r157 | Backlinks | Raw View | Raw edit | More topic actions...
Topic revision: r158 - 2017-03-28 - KatrinaExter
 
This site is powered by the TWiki collaboration platform Powered by Perl