The Mass of Dust in the Crab Nebula: RT Models with Smooth and Clumped Dust Distributions

The Universe Explored by Herschel ESA-ESTEC Patrick J. Owen Mike Barlow

Contents

- Introduction
- Herschel and Planck Observations of the Crab Nebula
- Issues with the dust mass calculations
- Developing a smooth model
- Extending to different grain species
- What a difference a clump makes
- Conclusions

Introduction

- Sub-mm observations of high redshift and metal poor galaxies have found far more dust than expected
- Core Collapse Supernovae have been proposed as the source of dust
- Predicted that 0.1-1.0 M_{\odot} of dust needed per supernova event^{[1,2]}
- Quantifying how much dust a supernova can produce is now very important

Dust in Supernovae

- Spitzer observations have been finding $<\!10^{\text{-3}}\,M_{\odot}$ of warm dust per core collapse supernova
- Herschel observations have found 0.1 M_{\odot} of cold dust in the ejecta of Cas A $^{[3]}$ and 0.4 M_{\odot} in SN1987A $^{[4]}$ supernovae
- This is enough dust for supernovae to account for the observed mass of dust at high redshifts

[3] Barlow et al 2010 A&A

[4] Matsuura et al 2011 Science and ESTEC2013 talk

ESA Herschel and Planck Observations of the Crab Nebula

Estimating the Dust Mass in the Crab

- Amorphous Carbon $0.11{\pm}0.01~M_{\odot}~^{[5]}$
- Silicates
 0.24±^{0.32}_{0.08} M_☉ ^[5]
- Previous estimates from Spitzer
 2.4x10⁻³ M_☉ of warm dust ^[6]

[5] Gomez et al 2012 ApJ [6] Temim et al 2012 ApJ

Issues with this estimate of the dust mass

- Fitted with only two temperature components
- Does not take into account grains of different sizes or the distribution of those sizes
- Assumes that the dust is uniformly distributed throughout the nebula

An Alternate View: Temim and Dwek 2013

- Fitted a large number of modified black bodies for grain size/temperature distribution
- Central point source
- All dust at one distance
- Rouleau & Martin (1991) 0.02 M_{\odot} of dust with a distribution α = 3.5 over a range 0.001-1.0 µm

Building a radiative transfer model to estimate the dust mass using MOCASSIN^[7]

- Heats the dust radiatively
- Allows different grain size distributions
- Can use different sets of optical constants
- Provides a diffuse photon source
- Can model smooth, shell and clumpy density distributions

Ionisation in the Crab Nebula

- The Crab contains an inner pulsar wind nebula
- Photoionised rather than shock-ionised
- Diffuse photon source through the central 2/3 of the nebula
- Synchrotron spectrum from Hester 2006, modified to take in to account *Planck* sub-mm and mm observations

Geometry of the smooth model

Best fits for dust mass with a smooth model

 $a_{min} = 0.07 \ \mu m$ $a_{max} = 1.0 \ \mu m$ $\alpha = 2.9$ $0.31 \ M_{\odot}$ of dust Zubko AC^[9] Optical constants

Different Amorphous Carbon Optical Constants

 $a_{min} = 0.07 \ \mu m$ $a_{max} = 0.2 \ \mu m$ $\alpha = 2.9$ $0.16 \ M_{\odot}$ of dust Zubko BE Optical constants

Smooth Model Best Fit Results

	/	Amorphou	Silicate	Graphite		
	Zb AC	Zb BE	Hanner	R&M ^[11]	[12]	[12]
a _{min}	0.07 µm	0.001µm				
a _{max}	1.0 µm	0.2 µm	1.0 µm	1.0 µm	1.0 µm	0.25 µm
α	2.9±0.1	2.9±0.1	2.9±0.1	3.0±0.1	3.5±0.1	3.0±0.1
dust	0.31 M⊙	$0.16~M_{\odot}$	0.30 M⊙	0.08 M⊙	0.46 M⊙	$0.09~M_{\odot}$
mass	x ² =6.13	x ² =6.21	x ² =7.01	x ² =10.0	x ² =9.48	x ² =7.16

Different optical properties give very different dust masses [10] Hanner 1998 [11] Rouleau and Martin 1991 ApJ [12] Draine and Lee 1984 ApJ 15

Line Fluxes

- As well as fitting the SED, the model needs to fit the optical and IR emission line fluxes
- The smooth model (with N_e = 450 cm⁻³) fits dereddened H_{β} flux
- Optical line fluxes^[13] are fitted by varying the elemental abundances

Line Fluxes

	Wavelength	Observed	Modelled	Ratio
Η _β	4861	1.78×10 ⁻¹¹	1.80×10 ⁻¹¹	0.99
[O II]	3726+3729	18.11	19.9	0.91
[Ne III]	3869	4.65	3.90	1.19
[S II]	4069	0.37	0.32	1.16
[O III] + Hγ	4363	0.57	0.50	1.14
He I	4471	0.37	0.36	1.04
He II	4686	0.78	0.87	0.90
[O III]	5007	11.92	12.4	0.96
Ηα	6563	2.85	2.92	0.98
[N II]	6548+6584	6.87	4.67	1.11
[S II]	6717+6731	4.31	4.80	0.90 17

Shells: Smooth or Clumpy

All mass outside PWN Photon source $N_e = 450 \text{ cm}^{-3}$

Mass in clumps of radius 0.1 pc Filling factor of 0.1 Decreasing with r $N_e = 750 \text{ cm}^{-3}$ 18

Results of Shell and Clumpy Models

		Amorphou	Silicate	Graphite		
	Zb AC	Zb BE	Hanner	R&M		
Smooth	0.31 M⊙	0.16 M⊙	0.30 M⊙	0.08 M⊙	0.46 M⊙	0.09 M⊙
	x ² = 6.13	x ² = 6.21	x ² = 7.01	x ² =10.0	x ² = 9.48	x ² = 7.16
Shell	$0.27~M_{\odot}$	0.11 M⊙	$0.27~M_{\odot}$	0.08 M⊙	$0.40~M_{\odot}$	0.08 M⊙
	x ² = 9.9	x ² = 9.7	x ² = 10.6	x ² =12.1	x ² = 11.3	x ² = 11.0
Clumpy	0.64 M⊙	0.48 M⊙	0.60 M⊙	0.38 M⊙	1.5 M₀	0.4 M⊙
	x ² = 11.3	x ² = 11.5	x ² = 13.1	x ² =14.3	x ² = 14.4	x ² = 13.2
Clumpy	0.68 M⊙	0.50 M⊙	$0.63~M_{\odot}$	$0.44~M_{\odot}$	2.0 M⊙	0.47 M⊙
ICM	x ² = 11.2	x ² = 10.9	x ² = 13.9	x ² = 13.7	x ² = 12.1	x ² = 12.2

Different density distributions give very different dust masses

Nebula Mass

- The model can also be used to investigate the mass of the nebula as a whole
- The smooth model is far too massive 59 $M\odot$ of gas in the nebula
- The clumpy model gives a far more reasonable mass of 7.1 M☉ of gas which is in good agreement with canonical values for the nebula of 7-12 M☉^[14, 15]

[14] MacAlpine et al 2008 AJ [15] Smith 2013 MNRAS

Best Fit Results

Smooth models $0.1-0.3 \ M_{\odot}$ of amorphous carbon dust

Clumpy models $0.4-0.6 \ M_{\odot}$ of amorphous carbon dust

≜UCL

Conclusions

- Determining the dust mass using RT modelling gives higher dust masses than simple SED fits
- Different dust properties give very different dust masses
- Clumped dust density distributions give 2-3 times higher dust masses compared to smooth dust density distributions
- There is a large mass of dust in the Crab

Thank You