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Nitrogen hydrides in interstellar gas
 Major nitrogen reservoir probably in N or N2, but over 55 N-

molecules have been detected in space. 

Nitrogen hydrides, 
e.g. NH+, NH, NH2, 
and NH3, are key 
species in the 
nitrogen chemistry 
and at the root of the 
chemical network 
leading to more 
complex species.

High critical densities 
~ 10^8 cm^-3.

Figure by George Hassel, Siena College.
Grey = dust chemistry.
White = gas phase chemistry.
Solid lines = gas phase reactions as labeled.
Dashed lines = photodissociation.
Dotted lines = dissociative recombination.



Nitrogen hydrides in interstellar gas
 The lowest rotational transitions lie at sub-mm and THz 

frequencies and must therefore be observed from space with a few 
exceptions (lowest NH2 lie at 461 GHz).

 Before Herschel – only a few observations in interstellar space of 
NH (first discovered 1991, Meyer & Roth) and NH2 (first discovered 
1993, van Dishoeck et al.). Still no detection of NH+.

 The nitrogen hydrides have hyperfine structure (hfs) components.

 NH2 and NH3 have ortho and para spin symmetry states:

NH3 mainly observed in its para symmetry form (inversion 
lines). Few ortho-to-para ratio (OPR) estimates especially in 
cold gas (0_0 ortho level has no splitting).

NH2 OPR – one previous estimate by Goicoechea et al. 2004 
(ISO data).  



Observations of eight 
Galactic Plane targets 
show absorption 
against their bright far-
IR continuum. 
Different lines of sight 
are sampled and also 
give info on the very 
chemically rich 
background sources.

The bright  
background sources 
are high-mass star-
forming regions 
containing compact 
HII regions.

All molecules in the 
ground state 
very simple analysis.

PRISMAS 
Probing InterStellar Molecules with Absorption line 

Studies  (GT Herschel Key Programme)
PI: Maryvonne Gerin, CNRS/LERMA



N-hydrides towards G10.6-0.4 (W31C) and W49N

First results similar abundances of all three species in the l-o-s:
NH/NH3 ~ 2, NH2/NH3 ~ 1, using τ = -log(Ta/Tc) and RADEX (non 
equilibrium radiative transfer code) assuming n(H2) = 500 cm-3 and 
Tk = 30 K.

Mean abundance relative to total amount of hydrogen in the l-o-s:
X(NH) ~ 6e-9, X(NH

2
) ~ 3e-9, X(NH

3
) ~ 3e-9

assuming high temperature limits OPR(NH3) = 1 and OPR(NH2) = 3. 
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Line-of-sight:

Simultaneous fitting 
assuming Gaussian 
optical depth profiles of 
NH, NH2, NH3 – 
including all hyperfine 
structure (hfs) 
components.

Relative opacities of the 
hfs components scale as 
Aul*gu. 

We required that the 
V

LSR
 and line width of 

each velocity component 
must be the same for all 
transitions and species.

Used minimum no of 
velocity components.



 NH3 Ortho-to-para ratio in the 
sight-lines (translucent/diffuse gas) 

We have found an OPR of ~ 0.5 – 0.7 in the l-o-s towards W31C, 
W49N and SgrB2(M) which was surprising since we were expecting to 
find a value of unity  (the high temperature limit) or higher.

Ratios from the ground state transitions: ortho-NH
3
 1

0
-0

0
 and para-NH

3
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 (assuming J(T

ex
)≪ T

C  
) for Tex<10 K and f=572 and 1215 GHz.
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 NH3 Ortho-to-para ratio in 
dense(r) gas – combining 

PRISMAS with our OT1 data 

s

The excitation strongly depend on the 
radiation field which can change line ratios. 

    n(H2) ~1e3-1e5 cm-3 and T
k
~20-50 K in 

the absorbing layer.

P
e

rs
so

n
 e

t 
a

l. 
in

 p
re

p

G34.3+0.15

W51

W31C



 NH3 as a tracer of dynamics 
in star-forming regions 

    Poster session B 
# 45 (17-18 Oct)

    ”Observations of 
THz ammonia 
absorption tracing 
infall in high-mass 
star forming region 
G34.26+0.15”   M. 
Hajigholi et al.

OPR=1

M. Hajigholi et al. in prep

Example of on-going radiative transfer modelling of 
NH3 spectral lines using a spherically symmetric 
accelerated lambda iteration code (P. Bergman, 

Onsala space observatory).
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G34.3+0.15

    So far we have 
found an OPR-
NH3 of 0.5-1 in 

the source 
molecular 

clouds. Further 
modelling can 

hopefully 
improve this 

value.
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The complex structure of NH2

NH2 at 953 GHz has 24 (strong) hyperfine 
structure components (V

LSR
 from -16 to +28 

km/s w.r.t. the strongest hfs).

NH2 at 1444 GHz has 5 (strong) hyperfine 
structure components (at V

LSR
= 0 - 8 km/s 

w.r.t the strongest hfs).

G34.3+0.1 G34.3+0.1ortho-NH2 para-NH2

One velocity component is modelled assuming that all hfs components 
have Gaussian optical depth profiles and are scaled with Aul*gu.

Using Radex to convert opacities to N we get an OPR ~ 3.5 not including 
the background radiation.

Including the bg radiation we get OPR ~ 2.7.



NH2
W51

W31C
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ALI modelling of NH2 emission in W31C



Ortho-to-para ratio of NH2 
N(o-NH2) / N(p-NH2) 
vs. v

LSR
 

Emission in the 
sources is removed.

High temperature 
limit OPR(NH2) is 3.

Ortho-NH
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J = 5/2 – 3/2 at 1444 
GHz.

τ = -log(Ta/Tc) 
assumes J(T

ex
)≪ T

C 

 



Why so low ortho-to-para ratios?
A. Faure et al., ApJ, 2013, 770,2:  The low OPR of NH3 

and NH2 is consistent with nuclear spin selection rules in 
a para-enriched H2 gas independent of temperature in 
the range 5-30 K. A low OPR of H2 naturally drives the 
OPR of nitrogen hydrides to below their statistical 
values.

A. Faure et al. predict OPR(NH3) ~ 0.7 & OPR(NH2) ~ 2.3 
(but cannot predict higher opr than 1 and 3). (Talk about 
collisional excitation of interstellar hydrides session 8b.)

Poster session A no 68: Chemistry of Interstellar Nitrogen 
revisited with the Herschel Space Observatory, R. Le Gal.

Poster session B: nr 42 Nitrogen Hydrides in IRDCs: Exploring 
the Initial Conditions of IRDC Core Formation, Jimenez-Serra.



Searches for NH+ and p-NH2-
G10.6-0.4 (W31C) SgrB2 (M)

If detected – the rest frequency of 
NH2- is 933.996 GHz (141 MHz off-
set from the predicted frequency).

No clear NH+ detection in W31C. 
1σ/Tc=0.2% and 0.4% in W31C and 

SgrB2(M), respectively.



NH+ in SgrB2 (M) molecular cloud?

Simultaneous 
Gaussian fits to 
both NH+ ground 
state rotational  
transitions at 
1013 and 1019 
GHz =>

v
LSR

 = 59 km/s

width = 11.5 km/s



NH+ in SgrB2 (M) molecular cloud?

CH2NH
One blend 

with NH+ and 
one with SO2.

So most likely 
(almost) no 

NH+ 
absorption.



NH+ in SgrB2 (N) molecular cloud?
(HEXOS data)

Seems to be 
less CH2NH 

than in 
SgrB2(M) 
and very 

little SO2.

So part of the 
absorption at 

~60 km/s 
could come 
from NH+.

SgrB2(N)=black   SgrB2(M) = pink 



NH+ and p-NH2- upper limits towards 
SgrB2(M) and G10.6-0.4 (W31C)

N(NH+)/N(NH) ≲ 1 % in the l-o-s. 

In contrast to CH+ and OH+ relative to CH and OH, [CH+]/[CH] 
~ 1 and [OH+]/[OH] ~ 3% in visible data (e.g. Crane et al. 
1995, Krelowski et al. 2010, Wyrowski et al. 2010, Gerin et 
al. 2010). 

Chemical models predicts abundances:                              
X(NH+) ~ 1e-13 – 1e-14 (Persson et al. 2010).

In respective line-of-sight:                                             
N(NH+)/N_H ≲ 2e-10 and 7e-11.                                          
N(p-NH2-)/N_H ≲ 2e-11 and 4e-11.

In respective source molecular cloud: 
X(NH+) ≲ 1e-12  and 3e-12.                                                

 X(p-NH2-) ≲ 7e-14  and 9e-13.  



N+ absorption towards W31C
PI: Maryvonne Gerin (OT1 programme Diffuse ISM phases in the inner Galaxy)

N(N+) ~ 1.5e17 cm-2 in the 
total line of sight (10-60 km/s) 

N(N+)/N(NH+) ≳ 1e5.

Comparing with NH              
N(N+) / N(NH) ~ 1e3. 

Most N+ probably comes from 
WIM (Warm Ionized Medium) 
and not the same gas as NH, 
NH2 and NH3.  



Summary
 Similar abundances of all NH, NH2 and NH3 in diffuse/translucent gas: 

  N(NH)/N(NH3) ~ 1-2, N(NH2)/N(NH3) ~ 1 (using OPR-NH2 = 2.3 and    
  OPR-NH3 = 0.7).

 Abundance relative to molecular hydrogen in the l-o-s: X(NH3) ~ 6e-9.   
  Similar abundances in the denser gas associated with the star-forming  
  regions traced by absorption lines.

 Upper limits of X(NH+) <  1e-11 w.r.t. hydrogen in the diffuse gas and   
  ≲ 1e-12 – 1e-13 in W31C and SgrB2(M). 
N(NH+)/N(NH) <~ 1 % in the l-o-s towards W31C.

 A very tentative detection of NH2- :  X(NH2-) <~7e-14 in SgrB2(M).

 Ortho-to-para ratio of NH3 ~ 0.5 – 0.7 (high temperature limit is 1). 

 Ortho-to-para ratio of NH2 ~ 2.3 (high temperature limit is 3).

 N+ detected in absorption in the sight-line towards G10.6-0.4 (W31C).   
  N+/NH+ ≳ 1e5. Most of the column is probably from the WIM.





 NH3 Ortho-to-para ratio in 
dense(r) gas 

W31C

    OPR(NH3) ~      
0.5-1 in the gas 
associated with 
the sources; 
n(H2) ~1e3-1e5 
cm-3 and T

k
~20-

50 K) depending 
on model.

Example of on-going modelling of NH3 spectral lines 
using a spherically symmetric accelerated lambda 

iteration code (P. Bergman, Onsala space 
observatory).



Comparison of nitrogen hydrides in the l-o-s towards W31C 
with species tracing both high and low molecular fractions 



 NH3 OPR 

    Example of 
model 
dependence: 

    The only 
difference in 
the two models 
are small 
changes in the 
velocity field.
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