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Nitrogen hydrides in interstellar gas

* Major nitrogen reservoir probably in N or N2, but over 55 N-
molecules have been detected in space.

Figure by George Hassel, Siena College.
Grey = dust chemistry.

White = gas phase chemistry.

Solid lines = gas phase reactions as labeled.
Dashed lines = photodissociation.

Dotted lines = dissociative recombination.

Nitrogen hydrides,
e.g. NH+, NH, NH2,
and NH3, are key
species Iin the
nitrogen chemistry
and at the root of the
chemical network
leading to more
complex species.

High critical densities
~ 108 cm”-3.



Nitrogen hydrides in interstellar gas

* The lowest rotational transitions lie at sub-mm and THz
frequencies and must therefore be observed from space with a few
exceptions (lowest NH2 lie at 461 GHz).

* Before Herschel — only a few observations in interstellar space of
NH (first discovered 1991, Meyer & Roth) and NH2 (first discovered
1993, van Dishoeck et al.). Still no detection of NH+.

* The nitrogen hydrides have hyperfine structure (hfs) components.

* NH2 and NH3 have ortho and para spin symmetry states:

* NH3 mainly observed in its para symmetry form (inversion
lines). Few ortho-to-para ratio (OPR) estimates especially in
cold gas (0_0 ortho level has no splitting).

* NH2 OPR — one previous estimate by Goicoechea et al. 2004
(ISO data).



PRISMAS

Probing InterStellar Molecules with Absorption line

Studies (GT Herschel Key Programme)
Pl. Maryvonne Gerin, CNRS/LERMA
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Observations of eight
Galactic Plane targets
show absorption
against their bright far-
IR continuum.
Different lines of sight
are sampled and also
give info on the very
chemically rich
background sources.

The bright
background sources
are high-mass star-
forming regions
containing compact
HIl regions.

All molecules in the
ground state —*>
very simple analysis.



N-hydrides towards G10.6-0.4 (W31C) and W49N
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Persson et al. 2010, A&A

First results similar abundances of all three species in the I-0-s:
NH/NH, ~ 2, NH,/NH,~ 1, using 7 = -log(Ta/Tc) and RADEX (non
equilibrium radiative transfer code) assuming n(H2) = 500 cm-3 and
Tk = 30 K.

Mean abundance relative to total amount of hydrogen in the I-o-s:
X(NH) ~ 6e-9, X(NH ) ~ 3e-9, X(NH_) ~ 3e-9

assuming high temperature limits OPR(NH3) = 1 and OPR(NH2) = 3.




G10.6-0.4 Line-of-sight:

s SN, RN d  Simultaneous fitting

| - ‘ assuming Gaussian
optical depth profiles of
NH, NH2, NH3 —
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structure (hfs)
components.
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NH3 Ortho-to-para ratio in the
sight-lines (translucent/diffuse gas)

Persson et al. 2012, A&A

We have found an OPR of ~ 0.5 — 0.7 in the I-0-s towards W31C,
WA49N and SgrB2(M) which was surprising since we were expecting to
find a value of unity (the high temperature limit) or higher.

Ratios from the ground state transitions: ortho-NH_ 1 -0 and para-NH,_
2 -1 (assuming J(T_ )<< T_) for Tex<10 K and =572 and 1215 GHz.



G34.3+0.15

NH3 Ortho-to-para ratio In
dense(r) gas — combining
PRISMAS with our OT1 data
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The excitation strongly depend on the | e
radiation field which can change line ratios. T B © ° P "

n(H2) ~1e3-1e5 cm® and T ~20-50 K in
the absorbing layer.



: | wessacs OPR=1
NH3 as a tracer of dynamics (i
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In star-forming regions

Poster session B
# 45 (17-18 Oct)

"Observations of
THz ammonia
absorption tracing
infall in high-mass
star forming region
G34.26+0.15" M.
Hajigholi et al.
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M. Hajigholi et al. in prep Cont. vl ence -

Example of on-going radiative transfer modelling of
NH3 spectral lines using a spherically symmetric
accelerated lambda iteration code (P. Bergman,

Onsala space observatory).
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So far we have
found an OPR-
NH3 of 0.5-1 In
the source
molecular
clouds. Further
modelling can
hopefully
Improve this

value.
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The complex structure of NH2

G34.3+0.1 . ortho-NH2

G34.3+0.1 para-NH2

o—NH2 model VLSR=b'U./, A V=3.5 Km/s

—_ p—NH2 953 GHz observations

—_— p—NH2 Gauss model VLSH=60'7’ AV=3.5km/s, OPR=2.1
—_— p-NH2 1444 GHz observations

NH2 at 953 GHz has 24 (strong) hyperfine NH2 at 1444 GHz has 5 (strong) hyperfine
structure components (V,_, from -16 to +28  structure components (atV, =0-8km/s

km/s w.r.t. the strongest hfs). w.r.t the strongest hfs).

One velocity component is modelled assuming that all hfs components
have Gaussian optical depth profiles and are scaled with Aul*gu.
Using Radex to convert opacities to N we get an OPR ~ 3.5 not including
the background radiation.

Including the bg radiation we get OPR ~ 2.7.



Persson et al. in prep
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ALI modelling of NH2 emission in W31C

orto1,,-0,,953 GHz E =46

Cont. diff 0.4

ortho2_ _-1.. 907 GHz E =89 k
02" 11 u
Cont. diff 0.6

Cont. diff 0.8

Cont. diff -0.9




Ortho-to-para ratio of NH2

N(0-NH2) / N(p-NH2)
VS. VLS
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High temperature
limit OPR(NH2) is 3.

Ortho-NH2 1,.-0,J=
3/2 — 1/2 at 953 GHz
and para-NH_ 1 -1

J=5/2 —3/2 at 1444
GHz.
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T = -log(Ta/Tc)
assumes J(T_ )<< T_




Why so low ortho-to-para ratios?

* A. Faure et al., ApJ, 2013, 770,2: The low OPR of NH3

and NH2 is consistent with nuclear spin selection rules in
a para-enriched H2 gas independent of temperature In
the range 5-30 K. A low OPR of H2 naturally drives the
OPR of nitrogen hydrides to below their statistical
values.

* A. Faure et al. predict OPR(NH3) ~ 0.7 & OPR(NH2) ~ 2.3

(but cannot predict higher opr than 1 and 3). (Talk about
collisional excitation of interstellar hydrides session 8b.)

Poster session A no 68: Chemistry of Interstellar Nitrogen
revisited with the Herschel Space Observatory, R. Le Gal.

Poster session B: nr 42 Nitrogen Hydrides in IRDCs: Exploring
the Initial Conditions of IRDC Core Formation, Jimenez-Serra.



Searches for NH+ and p-NH2-

G10.6-0.4 (W31C) SgrB2 (M)
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No clear NH+ detection in W31C. If detected — the rest frequency of

10/Tc=0.2% and 0.4% in W31C and NH2-is 933.996 GHz (141 MHz off-
SgrB2(M), respectively. set from the predicted frequency).



NH+ Iin SgrB2 (M) molecular cloud?

Simultaneous
Gaussian fits to T j
both NH+ ground ' | | ~ 1013GHz
state rotational | | ‘ |
transitions at
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NH+ Iin SgrB2 (M) molecular cloud?

SgrB2M molecular cloud
Removed S02, CH2NH><2, NH2

- SO2 1012.673 GHz model
C H 2 N H CH,NH 1012611 GHz model
: CH,NH 1012.531 GHz model
O bl d —_0-NH, 1012.442 GHz model A
n e e n < . — Original spectra ‘
with NH+ and £’
. 9
one with SO2.

So most likely
(almost) no
NH+
absorption.




NH+ in SgrB2 (N) molecular cloud?
(HEXOS data)

SgrB2(N)=black SarB2(M) = pink
Seems to be grB2(N)=black SgrB2(M) = pin

less CH2NH NH' 1012540 GHz
than in
SgrB2(M)
and very =g
little SO2. E

So part of the
absorption at [ ‘
~60 km/s
could come
from NH+.
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NH+ and p-NH2- upper limits towards
SgrB2(M) and G10.6-0.4 (W31C)

N(NH+)/N(NH) < 1 % in the I-0-s.

In contrast to CH+ and OH+ relative to CH and OH, [CH+]/[CH]
~ 1 and [OH+]/[OH] ~ 3% in visible data (e.g. Crane et al.
1995, Krelowski et al. 2010, Wyrowski et al. 2010, Gerin et
al. 2010).

Chemical models predicts abundances:
X(NH+) ~ 1e-13 — 1e-14 (Persson et al. 2010).

In respective line-of-sight:
N(NH+)/N_H < 2e-10 and 7e-11.
N(p-NH2-)/IN_H < 2e-11 and 4e-11.

In respective source molecular cloud:
X(NH+) < 1le-12 and 3e-12.
X(p-NH2-) < 7e-14 and 9e-13.



N+ absorption towards W31C

Pl. Maryvonne Gerin (OT1 programme Diffuse ISM phases in the inner Galaxy)

N(N+) ~ 1.5e17 cm™“in the
NI 1481 e total line of sight (10-60 km/s)
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Most N+ probably comes from
WIM (Warm lonized Medium)
and not the same gas as NH,

NH2 and NH3.



Summary

¢ Similar abundances of all NH, NH2 and NH3 in diffuse/translucent gas:
N(NH)/N(NH3) ~ 1-2, N(NH2)/N(NH3) ~ 1 (using OPR-NH2 = 2.3 and
OPR-NH3 = 0.7).

* Abundance relative to molecular hydrogen in the |-o-s: X(NH3) ~ 6e-9.
Similar abundances in the denser gas associated with the star-forming
regions traced by absorption lines.

# Upper limits of X(NH+) < 1e-11 w.r.t. hydrogen in the diffuse gas and
< le-12 — 1e-13 in W31C and SgrB2(M).
N(NH+)/N(NH) <~ 1 % in the I-o-s towards W31C.

® A very tentative detection of NH2- : X(NH2-) <~7e-14 in SgrB2(M).
# Ortho-to-para ratio of NH3 ~ 0.5 — 0.7 (high temperature limit is 1).
# Ortho-to-para ratio of NH2 ~ 2.3 (high temperature limit is 3).

* N+ detected in absorption in the sight-line towards G10.6-0.4 (W31C).
N+/NH+ = 1e5. Most of the column is probably from the WIM.







orto 10—00 572.45 EI=0

NH3 Ortho-to-para ratio in | ‘
dense(r) gas

W31C

OPR(NH3) ~
0.5-1 in the gas
associated with
the sources;
n(H2) ~1e3-1e5
cm® and T ~20-

50 K) depending
on model.

<
@
()]
Q
s
5

0 0
Velocity [km/s]

Example of on-going modelling of NH3 spectral lines
using a spherically symmetric accelerated lambda
iteration code (P. Bergman, Onsala space
observatory).




Comparison of nitrogen hydrides in the I-o-s towards W31C
with species tracing both high and low molecular fractions
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NH3 OPR

Example of
model
dependence:

The only
difference In
the two models
are small
changes in the
velocity field.
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