UNIVERSITY^{of} BIRMINGHAM

Weak Lensing Mass – IR Luminosity Scaling Relation for Galaxy Clusters

Herschel Symposium 2013 Keelia Scott

Graham Smith Nobuhiru Okabe Chris Haines Maria Pereira Eiichi Egami Sarah Mulroy

- Cluster Physics and Motivations
- LoCuSS, Sample and Data
- IR luminosity calculation
- Results
- Plans for the future

WL mass map – optical Subaru

> Hot gas -X-ray Chandra

Old stars -K band UKIRT

> New stars – FIR 🧧 Herschel

Finn et al. 2005

Bai et al. 2011

UNIVERSITY^{OF} BIRMINGHAM

Galaxy Evolution Sample

- Multi-wavelength survey
 29 galaxy clusters
- Original selection from ROSAT All Sky Survey
- 0.15 < z < 0.3
- Massive X-ray bright clusters L_x>3x10⁴⁴ergs⁻¹
- Morphologically unbiased sample

UNIVERSITY^{OF} BIRMINGHAM Rich Data Set

Local Cluster Substructure Survey

Herschel

- PACS 100 160µm
- SPIRE 250 350 500µm

•Spitzer MIPS 24µm

•Weak lensing masses Okabe et al. 2010

 Highly complete spectroscopic follow up from ACReS (Arizona Cluster Redshift Survey)

UNIVERSITY^{of} BIRMINGHAM SED fitting

- Model SEDs Chary & Elbaz 2001
- Integrate over 8-1000µm
- Complete to 5x10¹⁰L_{sol}
- 313 Galaxies above Demi-LIRG limit
- Calculate L_{FIR} per cluster

UNIVERSITY OF BIRMINGHAM Scaling Relation

UNIVERSITY OF BIRMINGHAM Cluster Merger State

Cool-core (blue) Non cool-core (red) $M_{WL}/L_{FIR} = 1662 \pm 336$ 2886 \pm 666

X-ray centroid shift: small (blue) large (red) 2110 ± 606 2546 \pm 591

UNIVERSITY^{of} BIRMINGHAM

Comparison with Chung et al. 2011

UNIVERSITY^{OF} BIRMINGHAM

The Future

- Other indicators of cluster dynamical state
- Links between SFR and 'environment'
 - Making the most of the multi-wavelength data to explore where these galaxies are sitting
 - Radial trends of SFR
- Substructure within clusters
 - SFR of galaxies in in-falling groups
 - How long is group environment retained when infalling? How quickly does cluster environment influence galaxies in group?

Conclusions

- No trend in M_{WL}/L_{FIR} ratio with cluster mass but very high scatter
 - Slope: 0.94 +0.35 -0.32
 - Scatter: 0.67 +0.14 -0.12
- Mechanisms that scale with cluster mass do not have significant impact on the evolution of star formation in these clusters
- Evidence for merger state of cluster having small impact on mean $M_{\rm WL}/L_{\rm FIR}$
- Lower mass and lower redshift samples are consistent with our results