Weak Lensing Mass – IR Luminosity Scaling Relation for Galaxy Clusters

Herschel Symposium 2013
Keelia Scott

Graham Smith
Nobuhiru Okabe
Chris Haines
Maria Pereira
Eiichi Egami
Sarah Mulroy
Overview

- Cluster Physics and Motivations
- LoCuSS, Sample and Data
- IR luminosity calculation
- Results
- Plans for the future
Abell 0209

- WL mass map – optical Subaru
- Hot gas - X-ray Chandra
- Old stars - K band UKIRT
- New stars – FIR Herschel
How do global cluster properties affect total SFR?

Finn et al. 2005

Bai et al. 2011
Galaxy Evolution Sample

- Multi-wavelength survey
 29 galaxy clusters
- Original selection from ROSAT All Sky Survey
- \(0.15 < z < 0.3\)
- Massive X-ray bright clusters \(L_x > 3 \times 10^{44} \text{ergs}^{-1}\)
- Morphologically unbiased sample
Rich Data Set

- Herschel
 - PACS 100 160μm
 - SPIRE 250 350 500μm
- Spitzer MIPS 24μm
- Weak lensing masses
 Okabe et al. 2010
- Highly complete spectroscopic follow up
 from ACReS (Arizona Cluster Redshift Survey)
• Model SEDs Chary & Elbaz 2001
• Integrate over 8-1000μm
• Complete to $5 \times 10^{10} L_{\text{sol}}$
• 313 Galaxies above Demi-LIRG limit
• Calculate L_{FIR} per cluster
Scaling Relation

Slope: 0.94 \pm 0.35 -0.32

Scatter: 0.67 \pm 0.14 -0.12
Cluster Merger State

Cool-core (blue) Non cool-core (red)

\[M_{\text{WL}}/L_{\text{FIR}} = 1662 \pm 336 \quad 2886 \pm 666 \]

X-ray centroid shift: small (blue) large (red)

\[2110 \pm 606 \quad 2546 \pm 591 \]
Comparison with Chung et al. 2011
The Future

- Other indicators of cluster dynamical state
- Links between SFR and 'environment'
 - Making the most of the multi-wavelength data to explore where these galaxies are sitting
 - Radial trends of SFR
- Substructure within clusters
 - SFR of galaxies in in-falling groups
 - How long is group environment retained when in-falling? How quickly does cluster environment influence galaxies in group?
Conclusions

- No trend in $M_{\text{WL}}/L_{\text{FIR}}$ ratio with cluster mass but very high scatter
 - Slope: 0.94 \pm 0.35 -0.32
 - Scatter: 0.67 \pm 0.14 -0.12
- Mechanisms that scale with cluster mass do not have significant impact on the evolution of star formation in these clusters
- Evidence for merger state of cluster having small impact on mean $M_{\text{WL}}/L_{\text{FIR}}$
- Lower mass and lower redshift samples are consistent with our results