#### Collisional Excitation of Interstellar Hydrides



Alexandre Faure<sup>1</sup>, O. Alpizar<sup>3</sup>, A. Bacmann<sup>1</sup>, A. Bergeat<sup>3</sup>, C. Ceccarelli<sup>1</sup>,
S. Chefdeville<sup>3</sup>, M. Costes<sup>3</sup>, F. Dumouchel<sup>2</sup>, M. Fournier<sup>4</sup>, P. Halvick<sup>3</sup>, K. Hickson<sup>3</sup>, M. Hernandez-Vera<sup>2</sup>, P. Hily-Blant<sup>1</sup>, Y. Kalugina<sup>2</sup>, M. Lanza<sup>2</sup>, R. Le Gal<sup>1</sup>,
S. Le Picard<sup>4</sup>, F. Lique<sup>2</sup>, S. Maret<sup>1</sup>, C. Naulin<sup>3</sup>, C. Rist<sup>1</sup>, I. Schneider<sup>2</sup>, I. Sims<sup>4</sup>, T. Stoecklin<sup>3</sup>, L. Wiesenfeld<sup>1</sup>
<sup>1</sup>Université de Grenoble, IPAG, France
<sup>2</sup>Université du Havre, LOMC, France
<sup>3</sup>Université de Bordeaux, ISM, France
<sup>4</sup>Université de Rennes, IPR, France

The Universe Explored by Herschel, ESA-ESTEC, 15-18 October 2013

#### Motivation



- Hydrides play a central role in astrochemistry as
  - reservoirs of heavy elements
  - **building blocks** of chemistry
- State-specific reactive processes with electrons, H and H<sub>2</sub> compete with energy transfer processes

#### Outline



Adapted from Asplund et al. ARAA 47 581 (2009)

- Carbon
  - CH<sup>+</sup>
- Nitrogen
  - NH, NH<sub>3</sub>
- Oxygen
  - OH, OH<sup>+</sup>, H<sub>2</sub>O
- Halogen
  - HF, HCI



#### Hydride chemistry

- Initial steps
  - $X + H_2 \rightarrow XH + H$  (e.g. F or high temperature)
  - $X^+ + H_2 \rightarrow XH^+ + H_2$  (e.g. X=C, N, CI)
  - X + H<sub>3</sub><sup>+</sup> → XH<sup>+</sup> + H<sub>2</sub> (e.g. X=C, O)
- Hydrogen abstraction
  - $XH_n^+ + H_2 \rightarrow XH_{n+1}^+ + H$  (n=1-3)
- Dissociative recombination
  - $XH_{n^+} + e^- \rightarrow XH_{n-1} + H (n=2-4)$



### Carbon

# $\begin{array}{l} C^+({}^2P) + H_2(v,j) \rightarrow CH^+(X^1\Sigma^+,j') + H \end{array}$



Zanchet et al. ApJ 766 80 (2013)

- Wavepacket calculations by Zanchet et al. (2013) using the PES of Stoecklin & Halvick (2005)
- In PDRs, CH<sup>+</sup> excitation is mostly driven by chemical pumping (see also Godard & Cernicharo 2013)
- Talk by B. Godard
- C<sup>2+</sup> + H<sub>2</sub> → CH<sup>+</sup> + H<sup>+</sup> recently investigated by Bacchus-Montabonel & Wiesenfeld (2013)

# $\begin{array}{c}C^{+} excitation\\ C^{+}(^{2}P_{j}) + H_{2} \rightarrow C^{+}(^{2}P_{j'}) + H_{2}\end{array}$



Lique et al. J. Chem. Phys. 138 204314 (2013)

 Close-coupling calculations by Lique et al. (2013) using a dedicated new PES

The flux of the <sup>2</sup>P<sub>3/2</sub> → <sup>2</sup>P<sub>1/2 line</sub> at 158µm is increased by up to 30% for typical diffuse cloud conditions

#### CH<sup>+</sup> destruction CH<sup>+</sup>( $^{1}\Sigma^{+}$ ) + H $\rightarrow$ C<sup>+</sup>( $^{2}P$ ) + H<sub>2</sub>



- QCT, quantum and statistical calculations by Halvick et al. (2007), Warmbier & Schneider (2011)
- Recent measurements by Plasil et al. (2013) suggest that non-rotating CH<sup>+</sup> is protected against H attack
- A new CH<sub>2</sub><sup>+</sup> PES is required to interpret the 22PT measurements (see Grozdanov & McCarroll 2013)

#### CH<sup>+</sup> excitation CH<sup>+</sup>(j) + He $\rightarrow$ CH<sup>+</sup>(j') + He



Turpin et al. ApJ 511 A28 (2010)

- Close-coupling calculations by Turpin et al. (2010) using a nonreactive CH<sup>+</sup>-He PES
- Large differences expected for H and H<sub>2</sub>, which are reactive with CH<sup>+</sup>
- Electron-impact rate coefficients computed by Lim et al. (1999) using *R*-matrix method



## Nitrogen

#### NH<sup>+</sup> formation N<sup>+</sup>(<sup>3</sup>P) + H<sub>2</sub>(j) $\rightarrow$ NH<sup>+</sup>(X<sup>2</sup>\Pi) + H



- Pioneering measurements by Marquette et al. (1988), Gerlich (1993)
- The reaction is endothermic or hindered by a small barrier
- Strong dependence on the o-H<sub>2</sub> fraction and fine structure states of N<sup>+</sup> (Zymak et al. 2013)

# $\begin{array}{l} \mathsf{NH}_3 \text{ formation} \\ \mathsf{NH}_n^+ + \mathsf{H}_2 \xrightarrow{} \mathsf{NH}_{n+1}^+ + \mathsf{H} \text{ (n=0-3); } \mathsf{NH}_4^+ + e^- \xrightarrow{} \mathsf{NH}_3 + \mathsf{H} \end{array}$



Faure et al. ApJ 770 L2 (2013)

- Surprising low values of the NH<sub>3</sub> o/p ratio (<1) measured by Herschel (Persson et al., Le Gal et al.)
- A low o/p ratio for NH<sub>3</sub> is consistent with nuclear spin selection rules in a para-enriched H<sub>2</sub> gas
- Supports a gas-phase synthesis
- See Talk by C. Persson, Poster by R. Le Gal P68,

#### NH excitation NH(N, j, F<sub>1</sub>, F)+He $\rightarrow$ NH(N', j', F<sub>1</sub>', F')+He



Dumouchel et al. J. Chem. Phys. 137 114306 (2012)

- H/D isotopic substitution has strong effects for hydrides
  - kinematics (mass and velocities)
  - PES (centre of mass, intramolecular geometries)
- See also Scribano et al. (2010), Wiesenfeld et al. (2011) for HDO and D<sub>2</sub>O

NH<sub>3</sub> excitation  $NH_3(j_k) + H_2 \rightarrow NH_3(j'_{k'}) + H_2$ 



Pirani et al. submitted to JPCA

- Close-coupling calculations by Maret et al. (2009) using a highaccuracy PES
- Non-LTE calculations suggests that the calibration of ammonia thermometer is robust
- The accuracy of the PES was recently confirmed by molecular beam experiment



## Oxygen

H<sub>2</sub>O excitation  $H_2\overline{O}(j_{kakc}) + H_2 \rightarrow H_2O(j'_{k'ak'c}) + H_2$ 



Yang et al. J. Chem. Phys. 134 204308 (2011)

- The high accuracy of the H<sub>2</sub>O-H<sub>2</sub> PES (Valiron et al. 2008) was confirmed experimentally:
  - Inelastic differential cross
  - Pressure broadening
  - Elastic integral cross sections
  - Spectrum of the complex
  - Second virial coefficient
  - Vibrational relaxation
- See Daniel et al. 536 A76 A&A (2011) (high temperature : Faure & Josselin 492 257 2008)

 $H_2O(j_{kakc}) + e^- \rightarrow H_2O(j'_{ka'kc'}) + e^-$ 



Zhang et al. Phys. Scr. 80 015301 (2009)

- R-matrix calculations by Faure et al. (2004) were validated by differential/integral measurements
- Electron-impact excitation of water is crucial as soon as x<sub>e</sub>>10<sup>-5</sup> (e.g. PDRs, comets)

#### OH excitation OH( $F_i$ , j) + He $\rightarrow$ OH( $F'_i$ , j') + He



Kalugina et al. in preparation

- Rotationally inelastic scattering of OH by He and D<sub>2</sub> was measured by Kirste et al. (2010)
- Excellent agreement between theory and experiment with the new OH-He PES (Kalugina et al.)
- Different propensity rules predicted for H<sub>2</sub> collisions (Alexander et al.)

#### OH<sup>+</sup> excitation OH<sup>+</sup>(N, j, F) + He $\rightarrow$ OH<sup>+</sup>(N', j', F') + He



- Talk by Z. Nagy
- Close-coupling calculations by Lique et al. (in preparation), including hyperfine structure
- Large differences expected for H
- Electron-impact excitation computed by van der Tak et al. (submitted) using Coulomb-Born



### Fluorine Chlorine

### HF and HCl excitation



Guillon & Stoecklin MNRAS 420 579 (2012)

- Close-coupling calculations on
  - HF+H<sub>2</sub> by Guillon & Stoecklin (2012)
  - HCI+H<sub>2</sub> by Lanza et al. (in prep.)
- Significant differences between He and p-H<sub>2</sub>, in particular nearresonant energy transfer.
- See Poster on Cl by M. Kama P71
- Electron-impact excitation of HF computed in van der Tak et al. (2012)

#### HF formation



- CRESU measurements down to 11K have confirmed the quantum calculations of Lique et al. (2011)
- Non-adiabatic effects important
- Strong non-Arrhenius temperature dependence (tunneling)

### Conclusions

- Excitation of hydrides is strongly sensitive to the collider (He, pH<sub>2</sub>, oH<sub>2</sub>)
- Chemical pumping important for reactive ions (state-specific rates essential)
- Nuclear spin selection rules crucial to predict o/p ratios
- Strong effects of H/D substitution
- Current quantum calculations give an accuracy rivalling experiment

- Systems studied include:
  - CH<sup>+</sup>
  - NH, ND
  - NH<sub>3</sub>, ND<sub>2</sub>H
  - OH, OH<sup>+</sup>, H<sub>2</sub>O, HDO, D<sub>2</sub>O
  - HF
  - HCI
- Future systems include:
  - CH
  - NH<sub>2</sub>D
  - H<sub>3</sub>O<sup>+</sup>
  - SH<sup>+</sup>

. . .



### Ackowledgements

This work has been supported by

- Agence Nationale de la Recherche (ANR-HYDRIDES, contract ANR-12-BS05-0011-01) <u>http://ipag.osug.fr/Hydrides/</u>
- CNRS national program "Physico-Chimie du Milieu Interstellaire"
- "Région Rhône-Alpes" (Cible program)