Herschel far-IR and submm spectroscopy of the Galactic Center

Javier R. Goicoechea CAB (CSIC-INTA), Madrid.

M. Etxaluze, J. Cernicharo, M. Gerin, D. A. Neufeld, A. Contursi, M. De Luca, P. Encrenaz, N. Indriolo, D.C. Lis, E. T. Polehampton, P. Sonnentrucker

STORE OF STREET, STORE OF STORE

DIRBE @ 140 µm

CENTRO DE ASTROBIOLOGÍA ASOCIADO AL NASA ASTROBIOLOGY INSTITUTE

Spiral Galaxy M51 ("Whirlpool Galaxy")

NASA / JPL-Caltech / R. Kennicutt (Univ. of Arizona)

PACS 70/100/160

Herschel's far-IR view of the Galactic Center

- A few 100's times closer than the nearest AGN \rightarrow high spatial resolution
- GC= 0.1% of the Galaxy volume but ~10% molecular gas mass
- GC ISM: on average higher $n(H_2)$, T_k , Δv_{turb} , B, ... gas heating mechanisms?

The inner central parsec of the Galaxy

Herschel PACS-SPIRE maps SgrA*, the central cavity and the CND

6 cm radiocontinuum (VLA)

ESA Press release

SPIRE+PACS spectrum towards SgrA* (55-650um)

- Molecular lines of: OH⁺, H₂O⁺, H₃O⁺, CH⁺, HF, H₂O, OH, NH, NH₂, HCN, HCO⁺...
- Atomic fine structure lines: [OIII], [OI], [CII], [NIII], [NII] and [CI]
- ¹²CO rotational ladder (*J*=4-3 to 24-23 towards SgrA*, and *J*=30-29 towards CND)

SgrA* spectrum: not as extreme as *e.g.*, Arp220 (Gonzalez-Alfonso et al. 2013) or Mrk231 ULIRGs (van der Werf et al. 2010)

Powerful FIR diagnostic toolbox to characterize galaxy nuclei

The inner central parsec of the Galaxy Central cavity and mini-spiral

The inner central parsec of the Galaxy **Strong [OI] emission**

[OI]63µm velocity-shifts and broad line-wings in SgrA* High-velocity gas motions

The inner central parsec of the Galaxy High-J CO peaks in the CND but detectable towards SgrA*

The inner central parsec of the Galaxy **FIR luminosities** Inner 30"x30"

Luminosity
885 L _{SUN}
855 L _{SUN}
230 L _{SUN}
130 L _{SUN}
120 L _{SUN}
125 L _{SUN}
6 L _{SUN}
4 L _{SUN} ♥

FIR cooling: Neutral atomic ≈ 46% →GC = HII regionCO molecular ≈ 6%+ hot neutral component

NOTE: Line intensities corrected by the A_V =30 extinction towards the GC (corrections <15% in the FIR) Extrapolation of the mid-IR extinction-law derived by Lutz (1999) for SgrA*.

Properties and origin of hot molecular gas (traced by CO) towards SgrA*

• A moderate positive curvature in the rotational diagram can be explained either by:

(a) multiple temperature components (that could be in LTE).

(b) a (subthermally excited) single-temperature non-LTE component ($T_k \gg T_{rot}$)

e.g., Neufeld 2012, ApJ

Properties and origin of hot molecular gas (traced by CO) towards SgrA*

• A moderate positive curvature in the rotational diagram can be explained either by:

(a) multiple temperature components (that could be in LTE).

(b) a (subthermally excited) single-temperature non-LTE component ($T_k \gg T_{rot}$)

e.g., Neufeld 2012, ApJ

Properties and origin of hot molecular gas (traced by CO) towards SgrA*

PDR models (crudely) reproduce the high-J CO lines only if unresolved hot and dense clumps exist $(n_H \sim 10^7 \text{ cm}^{-3})$

Let's compare with a prototypical high-UV field PDR? The Orion Bar PDR...

Strongly UV-irradiated PDRs

Joblin et al. In prep. Goicoechea et al. 2011

Excited CO emission from Photodissociation Regions

Spitzer-IRAC 8um

Orion Bar PDR vs. Sgr A*

 $T_{rot}(SgrA^*) > T_{rot}$ (Orion Bar PDR) $L(CO)/L_{FIR}$ (SgrA*) > $L(CO)/L_{FIR}$ (Orion Bar).

NOT the same environment

1) <u>Distribution</u> of temperature components, $dN(CO)/dT_k = aT_k^{-b}$, at $n(H_2) \sim 10^{4-5}$ cm⁻³, and $b \sim 2.0-2.5 \rightarrow$ with "most CO (>96%) at $T_k < 300$ K".

→ UV heating can explain the lower-J CO emission but not the high-J CO line emission
→ Strongly irradiated dense clumps?

2) <u>Single</u>, hot $(T_k \approx 10^{3.1} \text{ K})$ and low-density $(n(H_2) < 10^4 \text{ cm}^{-3})$ gas component

→ "all CO is hot": PDRs, XDRs or enhanced CR flux heating NOT enough. (also non detections of excited OH⁺ or H₂O⁺ lines) →Low density shocks??

(Flower & PdF 2010)

Shocks near SgrA* consistent with the high velocity gas and with distorted velocity field in the region

Kaufman & Neufeld 1996

T_{rot} (CO) (PACS domain)

- GC is a unique laboratory for extragalactic nuclei studies far-IR shifts to ALMA for high-z
- Spectral-mapping provides new insights on the gas physical conditions and on the main heating mechanisms at large scales (not with photometry).
- Irradiated warm (200-300K) dense clumps as possible explanation of the CO observations.
- A hot CO component (T_k~1000 K) could be alternatively inferred towards in the gas near SgrA*. In this case low-density shocks could dominate the heating (outflows? Infall? cloudcloud collisions?)
- High angular resolution observations (ALMA) of high excitation lines of HCN/HCO⁺/CS could help in constraining the physical conditions of the gas.