CH⁺ and SH⁺ absorption spectroscopy with Herschel: probing the turbulent dissipation in the diffuse ISM.

> B. Godard, E. Falgarone, G. Pineau des Forêts M. Gerin, P. Lesaffre, F. Levrier

① Quick overview of turbulence and its unkowns

2 The TDR (turbulent dissipation regions) model

3 Derive turbulence properties from molecular observations

turbulent cascade

- advection force $\mathbf{u} \cdot \nabla \mathbf{u}$
- dissipation forces
 - friction $\nu \nabla^2 \mathbf{u}$
 - compression $\frac{1}{3}\nu\nabla[\nabla\cdot\mathbf{u}]$
 - ambipolar diff. $\gamma_{in}(\mathbf{u}_i \mathbf{u}_n)$
 - ▶ magnetic diff. $\mu \nabla^2 \mathbf{b}$

transfer rate

•
$$\bar{\varepsilon} = 2 \times 10^{-25} \text{ erg cm}^{-3} \text{ s}^{-1}$$

intermittency

- in space & time
- local dissipation $\varepsilon = \overline{\varepsilon}/f_v$

Moisy & Jimenez (2004)

unresolved questions

- dissipative scales?
- dissipative structure?
- physical processes involved?
- local rate of dissipation?

The TDR (turbulent dissipation regions) model

dissipative phase

- magnetized vortices $a^2 = 4\nu/l, u_{\theta m}$
- Lagrangian approach
- non-equilibrium chemistry
- turbulent heating processes
 - viscous friction
 - ion-neutral friction

relaxation phase

- Eulerian approach
- no turbulent heating

Time [yr] courtesy of P. Hily-Blant

The TDR (turbulent dissipation regions) model

5/13

model	parameters
-------	------------

- density $n_{\rm H}$
- shielding A_V
- CR ionization ζ
- stretching $a \rightarrow l$
- max rot. vel. $u_{\theta m} \rightarrow u_{in}$
- transfer rate $\overline{\varepsilon} \rightarrow N_V$
- lifetime $\tau_V \to N_R$

STRATEGY TO DERIVE TURBULENT PROPERTIES

• $n_{\rm H}$ increases with increasing symbol size

•
$$A_V = 0.4$$
, $\zeta = 3 \times 10^{-17} \text{ s}^{-1}$

LARGE SCALE TURBULENT ENERGY

• $N(CH^+)_{local} = 3 \times N(CH^+)_{disk}$

LARGE SCALE TURBULENT ENERGY

•
$$N(\text{CH}^+)_{\text{local}} = 3 \times N(\text{CH}^+)_{\text{disk}}$$

• $\frac{N(\text{CH}^+)}{N_{\text{H}}} \propto \bar{\varepsilon} \ n_{\text{H}}^{-2.2} \ A_V^{-0.32} \ a^{-0.5}$
• $n_{\text{H}} < 200 \ \text{cm}^{-3}$

•
$$\frac{1}{5} < \frac{\overline{\varepsilon}}{10^{-24} \,\mathrm{erg} \,\mathrm{cm}^{-3} \,\mathrm{s}^{-1}} < 5$$

- $2.5 \leq u_{\theta m} \leq 3.5 \text{ km s}^{-1}$
- reproduces the correlation
- SH abundance reproduced (SOFIA-GREAT, Neufeld et al. 2012)

9/13

TURBULENT DISSIPATION TIMESCALE

- CO formation in TDR : CH^+ ---> CH^+_3 \to HCO^+ \to CO
- $\tau_R(CO) \sim 100 \times \tau_R(CH^+) \sim 100\tau_R(HCO^+)$

TURBULENT DISSIPATION TIMESCALE

• CO formation in TDR : $CH^+ \dashrightarrow CH_3^+ \to HCO^+ \to CO$

- $\tau_R(CO) \sim 100 \times \tau_R(CH^+) \sim 100\tau_R(HCO^+)$
- $N(\text{CO}) \propto \tau_R / \tau_V \rightarrow 10^2 \leqslant \tau_V \leqslant 10^3 \text{ yr}$

TURBULENT DISSIPATION TIMESCALE

• CO formation in TDR : $CH^+ \dashrightarrow CH_3^+ \to HCO^+ \to CO$

- $\tau_R(CO) \sim 100 \times \tau_R(CH^+) \sim 100\tau_R(HCO^+)$
- $N(CO) \propto \tau_R / \tau_V \rightarrow 10^2 \leqslant \tau_V \leqslant 10^3 \text{ yr}$

STRETCHING OF TURBULENT DISSIPATION REGIONS

- under-emission during the dissipative burst $\sim 100~{\rm yr}$
- over-emission during the relaxation period $\sim 10^4 {\rm ~yr}$

STRETCHING OF TURBULENT DISSIPATION REGIONS

- under-emission during the dissipative burst $\sim 100~{\rm yr}$
- over-emission during the relaxation period $\sim 10^4$ yr
- $10^{-12} \leqslant a \leqslant 10^{-10} \text{ s}^{-1} \rightarrow 100 \leqslant l \leqslant 1000 \text{ AU}$

ADDITIONAL TDR PREDICTIONS

realistic fragmentation + PDR

- $N(\text{CO})_{\text{obs}}/N(\text{CO})_{\text{PDR}} > 10$
- explains the bending of $N({\rm CO})$ at $N({\rm H_2}) \sim 2 \times 10^{20}$

<u>TDR</u>

• if complete fragment. no bending

11/13

• if no fragment. strong bending and N(CO) too small at small N_H Additional TDR predictions

Summary

• properties of turbulent dissipation

▶ CH ⁺ / H	\rightarrow	dissipation rate	$n_{ m H},\overline{arepsilon}$
▶ SH^+ / CH^+	\rightarrow	ion-neutral decoupling	$n_{\rm H}, u_{\theta { m m}} = u_{in}$
▶ C ⁺ (160 μ m) / FIR	\rightarrow	stretching	$a \rightarrow l$
► CO / HCO ⁺	\rightarrow	timescale	$ au_V$

- agreement with other molecular tracers
 - \blacktriangleright CO / H₂ \rightarrow fragmented medium
 - column densities of OH, H_2O , C_2H , CH, SH, and H_2^{\star}
 - ... and their correlations

Future contributions

open issues

• explain H₂S abundances

• interpret velocity profiles

ALMA perspectives

- mapping the dissipative scales
- turbulence in extragalactic media