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[Outline]

(- AGN feedback...sure, but with which efficiency ???

- Physical state of the molecular gas in radio-galaxies: lessons
from Herschel and insights into the physics of feedback

- [Cll] as a tracer of low pressure, warm, non star-forming H,
\ gas (too diffuse to be bright in CO)




Feedback is needed to make galaxy growth inefficient...

Review by Silk &
Mamon 2012

Dual role of AGN feedback:

- High redshifts: quenches the
initial starburst associated with
early phases of galaxy
formation

- Low redshifts: complements
SN feedback to suppress gas
cooling and prevent gas
accretion

Galaxy luminosity AGN

“Too many small galaxies,

too many big galaxies in the nearby universe, | AGN feedback seems an appealin
too few massive galaxies at high redshift, l solution P °
too many baryons within the galaxy halos.”




AGN feedback is needed to make galaxy growth inefficient...
But why what efficiency??

HERSCHEL IR/SUB
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Thermal energy (X-ray
CERE)!

Bulk gas motions: outflows,
superwinds, ...

turbulence

ACCRETION:
gravitational
energy input




AGN feedback is needed to make galaxy growth inefficient...
But why what efficiency??

HERSCHEL IR/SUB
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Thermal energy (X-ray
CERE)!

Bulk gas motions: outflows,
superwinds, ...

—> Role of Turbulence in
ACCRETION: galaxy formation?

gravitational
energy input

——> Impact on the molecular
gas? On the SFE?




[Why observing [CIl] in radio-galaxies with Herschel? ]

Advantages of radio-galaxies: we can estimate
- Their jet mechanical power
- The spatial scales of energy dissipation: up to Mpc !

Multi-wavelength observations of powerful radio-galaxies:
- X-rays
- HI, NaD: outflow signatures, mass outflow rates
- CO(1-0)
- Spitzer mid-IR spectroscopy (H,/PAH: kinetic vs UV heating)
- Herschel far-IR spectroscopy:
158 ym, AE/k = 91K. Probes WNM > CNM transition (30 — 10* K)

Observations provide access to the physical conditions of
—> the gas and the way kinetic energy dissipates in the
different ISM phases, including the molecular gas




The 3C 326 radio galaxy: one of the best example of
negative jet-driven feedback

+ 3C326S° °
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J.P. Leahy et al.
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- Pair of galaxies 3C326N &
S at z=0.089

«Both contain nuclear radio
sources. Which creates the

VLA14
GHz image

jets? (Rawlings+90)
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Warm H,, gas in the 3C 326N radio galaxy

+ 3C326S° °
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- Pair of galaxies 3C326N &
S at z=0.09

«Both contain nuclear radio
sources. Which creates the
jets? (Rawlings+90)
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» L(H,)=8 x 10*! erg/s

2 x 10° M, of warm H,
» 3kpc turbulent H, disk
(Nesvadba+11)

» SFR < 0.07 M yr"
" L(H,)/L(IR) ~ 0.2 !

Ogle et al. 2007




Evidence for suppression of star formation

| @ Seyferts and LINERs
F & SF galaxies SINGS

@ Stephan Quintet
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.reservoir that can account for the [CII]
emission
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[ Powerful [CII] line but weak UV, CO and star formation! ] ‘
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[ClI] emission in star-forming galaxies
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Star formation
heating
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[ClI] emission as a probe of warm diffuse H, gas in AGN hosts

= C* cooling rate for a
molecular fraction of
90%, and solar
abundance (40% in gas
phase)

= Dust model
(Compiegne+10) for
I25Opm

* Pressure ~ 10° K cm=3
for 3C 326

= Weak [Ol] emission
implies T<300K and ny
< 5x103 cm-3 (Guillard
+13a)

= No detection of high-J
CO lines.
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What is the gas heating source?

Cosmic Rays?

C+ coolmg, T cmd Ny constont T 1OOK

— -14e-1 i
B 3C 326N coollng rate computed » ¢ =2%x10"*s" required
" | with dustem model: to balance the observed

| G=8 Habing, M(H,)=1.6x10%M ] [CII]_+H2_ cooling rate (I_ine
i I luminosity to mass ratio).
—> energetically possible

» The gas has to be
denser than n, = 104
Milky Way (Bennet+94) - cm3 to remain molecular

FZExT0 e il > [ClIJ[Ol] > 2.2 and

_ —16- -1 . )
g;%i] 0151 Il \weak CO lines do not

=5x10" s’ : favor this solution

100 1000 » But...CRs could be
ny [cm™] responsible for high C*/
CO abundance in H, gas
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What is the gas heating source?

Turbulent heating?

- 10% of the jet mechanical power (a few 1044
erg s') is enough to drive the outflow and
power the observed H, luminosities

(Nesvadba+10)

- turbulent heating is energetically
possible if:

3
3 O-turb

Iturp = > M, — > Licmy + Ly,

L(C*+H,)/M(H,) = 0.50 Lg/Mg

o > 180 km/s for H = 3 kpc.
Observations: o = 200-250 km/s

from [CIl] and near-IR H, (Nesvadba+11)




What is the gas heating source?

Observations (Guillard+13a)
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— C-shocks
Shock models

\ (Lesaffre+13)

See also B. Godard talk
(vortices)
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Turbulence as a feedback mechanism?
A non self gravitating disk in 3C 326N

Pressure equilibrium
(self-gravitating disk,
stellar spheroid)

H ~ /1), 20

Turbulent heating rate
> Cooling rate
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The H, gas is not gravitationnally bound on the physical scale of the disk ——> Low SFE




3C 326N is not a « one-off »

Bright (2 — 18 x 10-7 W/m-2) and very broad (400 — 1200 km/s) C* line with
complex, asymetric profiles (Guillard et al. in prep.).

Velocity &km s’g
-1500 -1000 =500 00 1000 1500
T T T T T T T

6
3C326
Cll [157.7um]

\ . .
171.5 172.0 172.5
Observed Wavelength [um]

1 . -1
Velocity [km s~ Velocity [km s~ Velocity [km s
~2000  -1000 5! looo 2000 1500 —1000 -506 Y™ *'sho ~1500 ~1000 -500 3 3%0 1000 1500
F l/\ T T T T ;| 15*‘ - T T T T 'ngwr49
F0Q208 . ] | 3C405 L 15
3 o LCIl [157.7um] ’ [ ClIl [157.7pum] ] [Cll [157.7um)]

181.5 182.0 182.5

1 17( 170. 7 166.0 166.5 167.0
168.5 169.0 169.5 70.0 70.5 171.0 Observed Wovelength [um]

Observed Wavelength [um] Observed Wavelength [um]

All these galaxies also show shock-excited rotational lines of H, in the mid-IR (Guillard+12)




C* [158um] / PAH 7.7um
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Stephan’s Quintet (Appleton+13)
EC / + other galaxy interactions (Taffy,
HCGs)

M3c326

IIIIIIII
lIIlIllI

T
=
@

M3c405

IIIIIIII
lllI[llI

ﬁDEA T3c236

%3(;305 =C5063

I
|

llllll

PKS1549 |

L Photoelectric heating GOALS Galaxies

T
—
1

lllll 1 1 lllllll 1 1 lllllll 1 1 lllllll 1 L1 11 lll

107 108 10° 10'° 10" 10'? 10"

Guillard et al. 2013, sub. L(24um) [Lo]




Enhancement of C* emission by turbulence?
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Conclusions

KDiscovery of kinematically-broad C* line emission in powerful radio-galaxies, too\
bright to be excited by star-formation alone.

= [CII] traces non star-forming warm H, gas, too diffuse to be bright in CO.

= The dissipation of mechanical energy (jet) is the most likely heating source.
Cosmic rays play an important chemical role (high C*/CO abundance in low A,

gas).

=Turbulent heating has a very important impact on the physical state of the
molecular gas and can prevent the H, gas to be bound on disk scales.

= Towards an understanding of how the mechanical energy is dissipated and re-
distributed among thermal/bulk/turbulent components... Crucial to understand the
suppression of star formation (negative feedback) in early galaxy formation. Input

for galaxy formation models! /

N






