Water & OH in Mrk 231 as seen by Herschel

Water & OH in Mrk 231 as seen by Herschel: Structure, excitation & feedback diagnostics

Jackie Fischer

Naval Research Laboratory Remote Sensing Division

Collaborators

- Eduardo González-Alfonso
- Eckhard Sturm
- Javier Graciá-Carpio
- Albrecht Poglitsch
- Alessandra Contursi
- S. Veilleux
- Dieter Lutz
- Steve Hailey-Dunsheath

- Nick Abel
- Aprajita Verma
- H. Spoon
- M. Meléndez
- N. Falstad
- E. Polisensky
- K. Stewart
- R. Davies
- S. Aalto

Water & OH in Mrk 231 as seen by Herschel

Full PACS Spectroscopic View of ULIRGs

For Arp 220 – a "FIR, molecular photosphere", τ(FIR) >> 1

Full PACS Spectroscopic View of ULIRGs

For the nearest Type 1 ULIRG – a "FIR, molecular photosphere", τ(FIR) > 1

Arp 220 & Mrk 231: Absorption traces radiative pumping by high radiation field

Mrk 231 OH Line Profiles vs Lower Energy Level

The Universe Explored by Herschel

J. Fischer

Mrk 231: Constraints on nuclear outflowing and quiescent, and low excitation components

T_{dust} ~ 90 - 120 K for all components

The size of the quiescent component (i.e. non-outflowing – thick disk, torus) is about 120 – 140 pc, with log N(OH) ~ 18.6, & τ(100μm) ~ 1.5 - 2

The outflowing component 130 – 160 pc, with log N(OH) ~ 17.4, & τ(100μm) ~ 1.5 – 2

Mass loss rate = $500 - 1200 \text{ M}_{\odot} \text{ yr}^{-1}$ Momentum flux ~ $15 \text{ L}_{AGN}/\text{c}$ Mechanical luminosity ~ $10^{11} \text{ L}_{\odot}$

The low excitation component has lower N(OH), $\tau(100\mu m) \le 1$ and the size is less constrained

González-Alfonso et al 2013, in press

A thick disk/torus and an outflow

González-Alfonso et al 2013, in press

The Universe Explored by Herschel

A thick disk/torus and an outflow

González-Alfonso et al 2013, in press

The Universe Explored by Herschel

Water & OH in Mrk 231 as seen by Herschel

H₂O profiles in Mrk 231

- Similar characteristics to OH profiles
- P-Cygni / blue –shifted peak absorption for ground-state and lower level transitions
- Zero velocity narrower absorptions for higher excitation transitions
- Blue wings present for all transitions

Water in Mrk 231: Model Line Fits

The H_2O line profiles can be fit fairly well just using the quiescent (QC) and high velocity (HV) components with $N(H_2O)$ about 20% and 60% lower than N(OH) for those components.

The implied ${}^{16}O/{}^{18}O$ ratio for both H₂O and OH is about 30, suggesting past and/or present stellar processing.

OH & H₂O in Arp220: Model Results

- The Arp 220 components have similar sizes and temperatures as Mrk 231
- In Arp 220, a quiescent component dominates the FIR with hints of moderate velocity outflow in the FIR (outflow is seen more clearly with high resolution submillimeter interferometry (has higher spatial resolution & probes deeper) by Sakamoto et al. (2009)
- Importantly Arp 220 has higher optical depths with $\tau(200) \approx 6 12$! (Sakamoto et al.)
- ¹⁶O/¹⁸O 70-90 for Arp 220

González-Alfonso+2012

Cloudy Input Parameters

• SED:

AGN (T_{UV}=10⁶, α_{OX} =10^{-1.4}, α_{uv} =10^{-0.5}, α_{x} =10^{-1.0})

SB (4 Myr continuous, Salpeter)

- n_H, density: at H⁺ face = 30, 300, 3000 cm⁻³
- **Ionization param**: $U = Q/4\pi r^2 nc$
- Stopping cond.: N(H_{Total})=10^{21.3} 10^{24.9}
- $B_o(at face), B(n): B=B_o(n/n_o)^{2/3}, B_o=100 \ \mu G$
- Equation of state: eg. Isobaric (gas, magnetic, radiation)
- Abundances: Gas phase abundances
- Dust properties: including PAHs
- Cosmic rays: CR ionization rate=5x10⁻¹⁷ s⁻¹

The Universe Explored by Herschel

J. Fischer

Cloudy code capabilities (esp. wrt XDR/PDRs)

• Photoelectric heating of grains

Grain temperature and charge (function of size & mat' I)

- 68 molecules including ~ 1000 reactions
- Size-resolved PAH distribution, where H is atomic
- H₂ formation on grains, temp. & material dependent
- Can extend calculation to a particular A_v or other condition
- Line intensities for CO and H₂
- Condensation of H₂O, CO, & OH onto grains for T<20 K
- Cosmic ray ionization processes and heating

References:Abel et al, 2004, '05, '08, '09 (molecular networks, microphysics)
van Hoof et al. 2004 (grain physics)
Shaw et al. 2005 (molecular hydrogen microphysics)
Rollig et al. 2007 (comparison of PDR models)

The Universe Explored by Herschel

The Universe Explored by Herschel

Summary

- A combination of high radiation density per particle density (ionization parameter, U), far-infrared extinction, geometry, and X-rays or cosmic rays play a role in the determining the far-IR spectroscopic signatures in ULIRGs high OH, H₂O column densities, radiative pumping, and line deficits
- Both a thick molecular disk or torus and a massive molecular outflow show their strong signatures in Mrk 231, while in Arp 220, a quiescent component dominates the FIR with hints of moderate velocity outflow in the FIR (seen more clearly with submillimeter interferometry)
- Herschel has caught Mrk 231 and other ULIRGs in the act of clearing out the star forming molecular fuel and quenching star-formation !
- AGN illumination and feedback *appears* to play an important role as mergers pass from far-IR bright to gas-poor elliptical galaxies

Questions

- What role do projection effects and dust obscuration play? Are the different signatures really indicative of different kinematics and power sources?
- Is it possible to differentiate between the effects of cosmic rays and X-rays?