PDR diagnostics as observed by PACS and SPIRE

E. Habart (IAS), J. Bernard-Salas (Open University), M. Köhler

A. Parikka, A. Abergel, E. Dartois (IAS)

H. Arab (STSCI), J. Goicoechea (CAB), C. Pinto (LAM), C. Joblin (IRAP)

and SAG4 (ISM group of the SPIRE consortium)

How radiation of young stars affects interstellar matter ?

Photon-Dominated Regions (PDRs)

Reprocess much of the radiation energy emitted by young massive stars

Origin of most of the non-stellar IR and sub-mm emission from galaxies

□ Key regions in the chemical and physical evolution of objects from the large scales of the galaxies to the small scale of protoplanetary disks

□ Spitzer and Herschel provide a wealth of spatial and spectral information of gas and dust emission in the heart of PDR

Sample of nearby galactic PDRs

Programs: SAG 4, WADI, HEXOS, OT..

□ PDRs spanning a wide range of excitation conditions and phases of the ISM:

Object	IRAS100	T _{eff} (K), Star	Go	n _H (cm ⁻³)
Orion Bar	20,000	40,000, O6	20,000	10 ⁵ -10 ⁷
NGC2023	2,000	23,000, B1.5V	1,000	10 ⁴ -10 ⁶
NGC7023	١,000	17,000, B3Ve	2,600	10 ⁴ -10 ⁶
Horsehead	500	33,000, O9.4V	100	10 ⁴ -10 ⁵
p Oph filament	500	22,000, B2V	400	10 ⁴ -10 ⁵
NGC7023 E	200	17,000, B3Ve	200	10 ⁴ -10 ⁵
Ced201	100	10,500, B9.5V	200	~I0 ⁴
IC63	100	30,000, B0.5IV	650	10 ⁴ -10 ⁵
IC59	100	30,000, B0.5IV	480	10 ³ -10 ⁴
L1721	100	22,000,B2IV	10	10 ³ -10 ⁴
California	100	37,000,07	30	103-104

G₀ : incident FUV radiation field (Habing)

PACS spectral mapping

Resolve the gas cooling lines; each species shows a specific morphology Inhomogenous medium with dense structures: filaments or clumps ?

SPIRE-FTS spectral mapping

Spectral cube computed with the gridding and super-resolution method SUPREME from fully-sampled observations
(=> Poster Ayasso)

• Spatial resolution : 17" - 42" (0.03-0.08 pc @ 400 pc)

• Maps of equal areas with SPIRE and PACS

• Dust continuum and gas lines: ¹²CO J=4-3 to J=13-12 ¹³CO J=5-4 to J=13-12 [CI]370 & 609μm, [NII]205μm CH⁺ J=1-0, H₂O...

• Köhler et al. submitted

Study together the bulk of dust and warm molecular gas. Excited CO localised at the edge. What are the key processes which regulate the emission of the different components ? Which components originate in the same medium ?

Results

- I. Role of the different gas coolants
- 2. Gas thermal pressures
- 3. Dust properties and density structure
- 4. Excitation and formation processes of key molecules

1. Gas cooling: spatial distribution

□ Trace gas cooling and efficiency of star formation up to high redshift

 \Box Strongest emission at the cloud surface where the gas is warm

Bernard et al. (2012) Bernard et al. in prep

- □ [CII] follows [OI] => [CII] originates mostly from neutral zone; HII contribution < 25%
- \Box [OI]145µm traces the dense PDR zone where the [CII]/[OI]145µm and [OI]63/145µm decrease
- □ Self-absorption of the [OI]63µm in PDR

1. Gas cooling: budget

1. Gas cooling: PDR code

• Meudon code (1.5.2) solves simultaneously the chemical and excitation equilibrium, the radiative transfer and the thermal balance

□ [OI]63/145 in data < model: opacity inside the PDR not taken into account properly

- \Box [CII]/[OI]145 decreases with increasing G_0 as expected while [CII]/H_2 ~ constant
- \Rightarrow Amount of warm diffuse gas underestimated by models for G₀<1000
- \Box Diffuse gas irradiated and slowly shocked could produce strong H₂ but not [OI] (Lessafre et al. 2013)

2. Gas temperature and pressure

- \Box CO and dust temperatures are directly dependent on G_0
- Excited CO reveals high column densities of warm and dense gas
- \Box H₂ rotational temperatures higher while column densities lower than CO
- \Box H₂ shifted towards the cloud edge
- \Rightarrow Excited CO traces a denser & cooler gas than H₂
- \Box High gas thermal pressure up to ~10⁷-10⁸ K cm⁻³ in regions of warm CO and dust emission

3. Dust properties and density structure

DustEM (Compiègne et al. 2011) + radiative transfer model

 \Box Dense filaments with $n_0 > 10^5$ cm⁻³

- Density profile selfconsistently reproduces atomic, molecular (CO) and dust emission
- □ CO emission comes from Av~I
- Dust evolution in the denser part (=> 3 Posters : Arab, Köhler, Ysard)

4. Excitation process : CO

□ First maps of high-excited CO (J=18-17, 19-18, 22-21) in PDRs (Orion Bar)

□ Excitation (UV, IR pumping, cosmic rays, chemical reaction, shock) depends on the environment

 \Box Spectacular agreement between morphologies of high-J CO, intermediate-J ¹³CO and H₂ tracing

irradiated dense structures

□ CO excitation temperature high at PAH emission peak

\Rightarrow Very strong constrain on the origin of the CO excitation : UV heating

□ RADEX & PDR analysis: P~3×10⁸ K cm⁻³ (size ~0.006 pc) (=> 2 Posters: Parikka, Joblin)

□ Pressure gradient => photoevaporation supported by gas dynamics in 7023N (=> Poster Berné)

4. Formation process: CH⁺ and OH

 \Box CH+ J=3-2 and OH 85µm lines have similar n_{crit} and E_u: ideal for comparison

 \Box CH⁺ formation: H₂ + C⁺ => H + CH⁺ (endothermicity: 4300 K)

□ CH⁺ correlation with H₂^{*}
=> formation depends on H₂^{*} (Naylor et al. 2010, Nagy et al. 2013)

 \Box OH formation: H₂ + O => H + OH

 $\hfill \label{eq:hon-correlation}$ Non-correlation between OH and $H_2^{\ *}$

=> formation does not depend on H_2^* (in agreement with Agundez et. al 2010).

□ OH emission traces irradiated structures (Goicoechea et al. 2011) but also correlates with a proplyds

(=> Poster Parikka)

Conclusions and Future Prospects

□ PACS and SPIRE spectral mapping excellent to study together the bulk of dust and gas morphology and energetics

□ Inhomogeneous medium containing small dense structures at high thermal pressures as a consequence of being directly irradiated. How long they stay ? Role in star formation ? Dust evolution in densest regions: coagulation ? Accretion ?

 \Box Role of each gas coolants for \neq radiation and phases: template for distant systems

• [CII] originates mostly from neutral zone, [CII] contribution >50% to the total cooling for G0<100 while [OI] contribution >50 % for G0>1000

- CO and dust temperatures correlate with G0
- H_2 traces a large amount of warm diffuse under-estimated by PDR code when G0<1000

□ High-J CO, CH+ and OH connected to the dense irradiated structures: constrain for the modeling of the warm ISM closely related disks or active galaxies

- CO excitation due to UV heating
- CH⁺ formation depends on excited H_2 , but not that of OH
- Excitation and dynamic (evaporation, turbulence) have to be studied together

