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How radiation of young stars affects
interstellar matter ?

Filament-like

condensations

HIl region

[ Structure

O Dynamics

L Chemistry
U Thermal

lance
Molecular ba a

Map: 250 ym cloud 1 Star formation

Molecular
cloud



Photons ionize, heat
and dissociate the gas
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Photon-Dominated Regions
(PDRs)

1 Reprocess much of the radiation energy

emitted by young massive stars

Q Origin of most of the non-stellar IR and

sub-mm emission from galaxies

[ Key regions in the chemical and physical
evolution of objects from the large scales of
the galaxies to the small scale of

protoplanetary disks

O Spitzer and Herschel provide a wealth of
spatial and spectral information of gas and dust

emission in the heart of PDR



Sample of nearby galactic PDRs

O Programs: SAG 4, WADI, HEXOS, OT..

1 PDRs spanning a wide range of excitation conditions and phases of the ISM:

Obiject IRAS 100 Tew(K), Star Go nH (cmd)
Orion Bar 20,000 40,000, O6 20,000 10°-107
NGC2023 2,000 23,000, B1.5V 1,000 104-10°¢
NGC7023 1,000 17,000, B3Ve 2,600 10%-10°¢
Horsehead 500 33,000, 9.4V 100 10%-10°

p Oph filament 500 22,000, B2V 400 10%-10°
NGC7023 E 200 17,000, B3Ve 200 10%-10°
Ced20]| 100 10,500, B9.5V 200 ~10*
1C63 100 30,000, BO.5IV 650 10%-10°
IC59 100 30,000, BO.5IV 480 103-10*

L1721 100 22,000,B21V 10 103-10*

California 100 37,000,07 30 103-10*

G, : incident FUV radiation field (Habing)



PACS spectral mapping

* Fully-sampled maps
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Resolve the gas cooling lines; each species shows a specific morphology

Inhomogenous medium with dense structures: filaments or clumps ?



SPIRE-FTS spectral mapping

IRIS Nebula

* Spectral cube computed with the
gridding and super-resolution
method SUPREME from fully-
sampled observations

(=> Poster Ayasso)
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* Spatial resolution : 177 - 42”
(0.03-0.08 pc @ 400 pc)

I 1 1
400 500
Wavelength um * Maps of equal areas with

SPIRE and PACS

* Dust continuum and gas lines:
12CO J=4-3 to J=13-12

13CO J=5-4 to J=13-12

[CI]370 & 609um, [NII]205um
CH* J=1-0, H,0O...

e Kohler et al. submitted

2CO J=11-10

Study together the bulk of dust and warm molecular gas. Excited CO localised at the edge.
What are the key processes which regulate the emission of the different components ?

Which components originate in the same medium ?



Results

|. Role of the different gas coolants

2. Gas thermal pressures

3. Dust properties and density structure

4. Excitation and formation processes of key

molecules



1. Gas cooling: spatial distribution

[CII]157um [O1]63um [O1]145um [CHI)/[O1]145um  [OI1]63/145um

0.e+00

Horsehead ' . : ‘
| ernard et al. (2012

1 Trace gas cooling and efficiency of star formation up to high redshift Bernard et al. in prep

[ Strongest emission at the cloud surface where the gas is warm

O [CII] follows [OI] => [CII] originates mostly from neutral zone; HIl contribution < 25%

Q [OI]145um traces the dense PDR zone where the [CII]/[OI]145um and [OI]63/145um decrease
[ Self-absorption of the [Ol]63um in PDR
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1. Gas cooling: budget

[CII] contributes up to 50% for G,<100

[Ol] contributes up to 50% for G,>1000

rion§ (lower limit since optically thick)
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Methods :

1 (1) maps convolved in the same beam

(1) background emission substracted

Habart et al. in prep.



1. Gas cooling: PDR code

* Meudon code (1.5.2) solves simultaneously the chemical and excitation equilibrium, the radiative transfer
and the thermal balance

Isobare models:
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aL iation of cum d [O11145 well duced Habart et al. 201 |
arge variation of [CIl] and [Ol] well reproduce Habart et al. in prep.

[ [OI]63/145 in data < model: opacity inside the PDR not taken into account properly

O [CH)/[OI]145 decreases with increasing G, as expected while [CII]/H, ~ constant

=Amount of warm diffuse gas underestimated by models for G,<1000
[ Diffuse gas irradiated and slowly shocked could produce strong H, but not [Ol] (Lessafre et al. 201 3)



2. Gas temperature and pressure
Excited CO localised at the dust emission peak (RADEX analysis)
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Orion bar 20000 256 - 360 | 150-170 106 0.01 1x 107! 1-2x10%2 50
NGC 7023 NW 1000 400 60-100 | 105-10% 0.01-02 2x10%0 2-25x102 30-35
NGC 2023 § 1000 - 10000 | 310-346 | 50-180 | 10°-10° 0.003-0.3 7x 1020 -2x10?! 5x10%! -1x10%
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Horsehead 50 264-398 | 40-70 | 10*°-10° 003-13 57x10¥-6.1x10% 1-4x10% 20

 CO and dust temperatures are directly dependent on G,
[ Excited CO reveals high column densities of warm and dense gas

[ H, rotational temperatures higher while column densities lower than CO

[ H, shifted towards the cloud edge
=> Excited CO traces a denser & cooler gas than H,

Q High gas thermal pressure up to ~107-108 K cm-3 in regions of warm CO and dust emission



3. Dust properties and density structure
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U Density profile selfconsistently reproduces atomic, molecular (CO) and dust emission

L CO emission comes from Av~I

[ Dust evolution in the denser part (=> 3 Posters : Arab, Kohler, Ysard)



4. Excitation process : CO

Contour levels at 0.3, 0.5, 0.7, and 0.9 of the
emission maximum

O First maps of high-excited CO (J=18-17, 19-18, 22-21) in PDRs (Orion Bar)

O Excitation (UV, IR pumping, cosmic rays, chemical reaction, shock) depends on the environment
O Spectacular agreement between morphologies of high-] CO, intermediate-] '3CO and H, tracing
irradiated dense structures

1 CO excitation temperature high at PAH emission peak

= Very strong constrain on the origin of the CO excitation : UV heating

0 RADEX & PDR analysis: P~3x108 K cm (size ~0.006 pc) (=> 2 Posters: Parikka, Joblin)

U Pressure gradient => photoevaporation supported by gas dynamics in 7023N (=> Poster Berné)



4. Formation process: CH* and OH

O CH+ J=3-2 and OH 85um lines have similar n_. and E : ideal for comparison

crit

O CH* formation: H, + C* =>H + CH* (endothermicity: 4300 K)

O CH* correlation with H,*
=> formation depends on H,* (Naylor
et al. 2010, Nagy et al. 201 3)

O OH formation: H, + O => H + OH

J Non-correlation between OH and
*

H,

=> formation does not depend on H,*

(in agreement with Agundez et. al
2010).

L OH emission traces irradiated
structures (Goicoechea et al. 201 1)
but also correlates with a proplyds

Contour levels at 0.3,0.5,0.7,and 0.9 of the emission
rnaodrnum

(=> Poster Parikka)



Conclusions and Future Prospects

L PACS and SPIRE spectral mapping excellent to study together the bulk of dust and
gas morphology and energetics

L Inhomogeneous medium containing small dense structures at high thermal
pressures as a consequence of being directly irradiated. How long they stay ? Role in
star formation ? Dust evolution in densest regions: coagulation ? Accretion ?

[ Role of each gas coolants for = radiation and phases: template for distant systems

* [CII] originates mostly from neutral zone, [CIl] contribution >50% to the total cooling for
GO0<100 while [OI] contribution >50 % for G0O>1000

* CO and dust temperatures correlate with GO

* H, traces a large amount of warm diffuse under-estimated by PDR code when G0<[000

O High-] CO, CH+ and OH connected to the dense irradiated structures: constrain
for the modeling of the warm ISM closely related disks or active galaxies

* CO excitation due to UV heating

* CH" formation depends on excited H,, but not that of OH

* Excitation and dynamic (evaporation, turbulence) have to be studied together
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