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Models of FUV
llluminated Shocks:

Can the water abundance in shocks be arbitrarily low?

Review of shock basics and high T water chemistry
Motivation for FUV
FUV-influenced post-shock chemical abundances

Effect of FUV on the coupling length

Surface, shielded and “sequestered” shocks




C-Shock Profile

® Continuous T,V

® | ow ionization fraction,
carried by ions or grains
bound to magnetic field

Velocity [km s-!]

® [Efficient coolants so that
shock doesn’t “break
down” (below 40 km/s)

® For v=15 km/s, lots of
H,O in the gas phase
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® |[f preshock gas is O-rich,
neutral-neutral reactions

Distance [10'® cm]

Kaufman & Neufeld 1996; Draine 1983 dominate
H2 + 0O ==>0H+H ® |fOislockedin ices,ion-
H, + OH ==> H,O + H neutral streaming sputters

the ice off grains
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J-Shock Profile

Z,cm

10'° 0 102 10% ® (Collisional and UV
dissociation in the hot
Molecule Formation (T~ % K) post shock
gas

® H; reformation begins
downstream at Ay ~ 0.1
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® Water forms efficiently
in the warm (T~500 K)
molecular reformation
plateau

Hollenbach, Elitzur & McKee 2013
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Got Warm Gas!?

Time scale to

) into water make water is
very short in
warm gas .....
regardless of why
it’s warm

o
I
=
)
=
I
0]
o
®
Q
-
@
g,
-
>
e
<
o
-
o)
o
-

Pre-shock water abundance

Log,, Time (Years)

Bergin, Melnick & Neufeld 1998
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SWAS: spectral
resolution adds nuance

I
Orion

KL

12C0 (1-0)

Assume:
n(H,) 10° cm™
T,..= 30K (Low-lum. YSOs)
S50 K (Lum. YSOs)
100 K (Orion KL)

\'(II_\)\]M
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Check: SWAS ’COJ=5-4
Mass (v 1sV5) m(llg X \'(Hj)\ Vo X

emitting area_ .

1:V2
x(0-] I:()) from LVG model that

reproduces | T, ~ dv between v,,v,

Franklin et al. 2008




Less than 1% of the outflow gas has passed
through shocks strong enough to convert all

O (not in CO) into H,O
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.....and then came Herschel
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HH21 | Tafalla et al. 2013 ~
x(H20) ~ 3x10-7 at high nT -

L1448 Santangelo et al.2013
x(H20) ~ 10-¢-10-
T~1100K

HH46 CO ladder
Visser et al. 201 |

Ser SMMI| Goicoechea et al. 2013
x(H20) < 2x10-¢,T ~ 800 K
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Simple Modification:

Shock Chemical Profiles with External FUV

Shock vel. =20 km s7; n(H,)_ = 10 cm™
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FUV influence on Postshock O-chemistry

log[Column relative to H-]

log[FUV Field Strength]

Friday, October 18, 13



What are the preshock conditions in

the protostellar environment!?
o

—

C+

PDR Model: CO/

n=10% cm"3 /
Go=100

Visser et al. 201 |

- lll 1 ' 1 Ll L 1.l
: 0.1 1
Hollenbach et al. 2009 Depth into the Cloud in Visual Magnitudes, A,

Friday, October 18, 13



Coupling Length Varies With Extinction
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Coupling Length Varies With Extinction

TIIIII[ 1 I ]]IIIII I 1 III]]]]

G,/n=10-3 |
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Coupling Length Varies With Extinction
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H,O Column Density

in ““Surface” Shocks

® Unlike shocks in
well-shielded
interiors, velocity
of water
formation is
density dependent

10-%

e Cut-off velocity
when shocks go
through sonic-
point (also density
dependent)
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Post-shock H,O Abundance: Surface Shocks
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Coupling Length Varies With Extinction
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Preshock PDR: n=10% cm-3, G,=10?
SEQUESTERED OXYGEN!

Gas at Ay ~ 2 has the
conditions needed
for suppression of
water abundance
- O frozen out
- CO abundance
down
- Coupling length
such that shocks
over ~ |5 km/s
9.4 I ) break down

Depth into the Cloud in Visual Magnitudes, A,
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Transition Region:
Freeze-out and Shortened L,

* Preshock gas has

n=10® cm-3 higher ionization

fraction and almost

all O frozen out on
grains

"V = |0 km/s
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e Dissociation
breakdown occurs

¢

= at v < |5 km/s

B ==> very little

B water in the gas
phase

Gas can be STRONGLY shocked and still not make much H,O
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|0 C-transition C-deep
C-surface (~10) pre-sputter
(10°6-105) (~107)

CO?  FineTuning 107 or 104



So.... where can you get (really) low H;O
abundances from C-shocks!?

® Not in fully shielded gas, unless speed is
low (v < |5 km/s).....but maybe none!

® Maybe in surface gas: C-shocks make water
efficiently even at low velocity, but
sufficiently high FUV can suppress it.
PROBLEM: little CO emission!

® Perhaps in “freezeout” gas, where ion-
neutral coupling heats gas in slow-ish
shocks BUT leaves volatiles frozen on

grains.




