



Universidad de La Laguna

## HerMES: Herschel/SPIRE-Selected Massive Starburst Galaxies at very high Redshifts

**Ismael Pérez-Fournon** 



Instituto de Astrofísica de Canarias

and

Departamento de Astrofísica, Universidad de La Laguna

### and the HerMES and SPIRE projects

The Universe Explored by Herschel, ESTEC, 16 October 2013



### hermes.sussex.ac.uk





### Herschel Multi-Tiered Extragalactic Survey



## HerMES Key Project

- <u>HerMES</u> is the Herschel Multi-tiered Extragalactic Survey, an astronomical project to study the evolution of galaxies in the distant Universe.
- Guaranteed Time project of the SPIRE team
- HerMES is coordinated by Seb Oliver (University of Sussex) and Jamie Bock (Caltech)
- The first paper (Riechers et al. 2013, Nature, 496, 329) on HFLS3, the highest redshift (z=6.34) massive starburst known, has been coordinated by Dominik Riechers (Cornell University)
- Paper describing the selection of SPIRE "red sources": Dowell, Conley et al. 2013
- See other HerMES contributions at this conference, some in collaboration with other Herschel surveys (PEP)

## The Legacy of Herschel

- The formation of stars in our galaxy
- Astrochemistry in our galaxy and in nearby galaxies
- Galaxy evolution
- ....

More challenging ...

- The formation of the first galaxies?
- Can we look into the epoch of recombination?
- Do we find new type of galaxies and star formation conditions?
- Astrochemistry in the early Universe

## Herschel versus Hubble extragalactic surveys

- Hubble can go very deep in the optical and near-infrared with great angular resolution ... but in small fields and volumes that do not include rare, low density objects
- Herschel has mapped quickly large areas of the sky ... but limited to bright sources and with poor angular resolution
- Complementary views of the high redshift Universe with Herschel giving us examples of the most extreme star forming galaxies probably located in the most massive dark matter haloes

## Lensed/unlensed high-z Herschel galaxies

Bright SPIRE sources are nearby spirals, or Blazars or high-z lensed galaxies

Negrello et al. 2010 Wardlow et al. 2013



#### HerMES and H-ATLAS SMA sample of Bussmann et al. 2013 bright lensed galaxies at z > 1.5Bussmann et al. lerMES J021830.5-053124 HerMES J022016.5-060143 H-ATLAS J083051.0+013224 H-ATLAS J084933.4+021443 H-ATLAS J085358.9+015537 H-ATLAS J090302.9-014127 0 Keckli-NIRC2 Ks Keckil-NIRC2 Ks HST F110W HST F110W\* Keckll-NIRC2 Ks HST F160W muture 2 1 0 -1 -2 10 5 0 -5 -10 2 1 0 -1 2 1 0 -1 -2 other reliancely -2 ATLAS J090311.6+003906 -ATLAS J090740.0-004200 H-ATLAS J091043.1-000321 H-ATLAS J091305.0-005343 H-ATLAS J091840.8+023047 HerMES J103826.6+581542 Ø Ø HST F160W HST F160W HST F160W Ø HST F160W HST F110W Keckll-NIRC2 K 3H-ATLAS 11251354+261457 rMES J105712.2+565457 HerMES J105750.9+5730.26 -ATLAS J113526,3-01460 H-ATLAS J114637.9-001132 HATLAS J125632.7+23362 HST F110W Ø **HST F110W** Ø HST F110W Ø WHT Ks SDSS i WHT Ks -2 -4 -1 -2 2 -2 2 ATLAS J132427.0+284452 H-ATLAS J132630.1+334410 132859.3+29232 3H-ATLAS J133008.4+245900 H-ATLAS J133649.9+291801 HATLAS J134429.4+30303 Keckll-NIRC2 Ks Keckll-NIRC2 Ks SDSS i HST F110W HST F110W Ø SDSSi à lerMES J1428255+345547 ATLAS J141351.9-000026 H-ATLAS J142413.9+022303 HerMES J142823.9+352619 HerMES J143330.8+345439 H-ATLAS J144556,1-004853

Figure 2. SMA 880 $\mu$ m images (red contours, starting at  $\pm 3\sigma$  and increasing by factors of  $\sqrt{2}$ ) of candidate lensed SMGs from H-ATLAS and HerMES, overlaid on best available optical or near-IR images (logarithmic scaling; telescope and filter indicated in lower left corner of each panel). North is up and east is left, with axes having units of arcseconds relative to the 880 $\mu$ m centroid as given in Table 1. The elliptical FWHM of the SMA's synthesized beam is shown in the lower right corner of each panel. The image separations are  $\approx 1 - 2''$ , suggesting gravitational potential wells typical of isolated galaxies or small numbers of galaxies for the lenses (only two lensed sources are associated with galaxy clusters: J132427.0+284452 and J141351.9-000026).

Keckll-NIRC2 Ks

HST F110W

Keckli-NIRC2 Ks

 $\oslash$ 

HST F110W

Ø

HST F110W

0

HST F110W

## HerMES "red" sources first results

• First paper: Riechers et al. 2013, Nature, 496, 329

## HFLS3: a dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

• Sample selection, source density, comparison with models, a few redshifts and main properties: Dowell, Conley et al. 2013

#### Detecting the Most Distant Massive Starburst Galaxies



- problem: z>4 dusty starburst galaxies very difficult to find (it took until 2009 to find the first z>4 SMG, detection was serendipitous)
- >850µm z selection broad
- <u>idea:</u> z>4 galaxy SEDs peak beyond 500µm
- ⇒"red" in Herschel/SPIRE
- ⇒ can develop efficient technique to ID very high-z dusty starbursts



Herschel finds the "tip of the iceberg" ⇒ CCAT needed to probe more normal galaxies & to best match ALMA

But: does it really work?

#### HFLS3: SPIRE selection of z > 4 submm Galaxies

## SPIRE selection of z > 4 submm Galaxies is described in more detail in Dowell et al. 2013



#### Very efficient selection of z > 4 Dusty Star Forming Galaxies

But the Herschel angular resolution in the SPIRE bands is 18", 25", 36" at 250, 350, 500 um

#### Herschel/SPIRE "Ultra-Red" sources



Bethermin et al. models of SPIRE galaxies:

**Expect** density of massive starbursts at z>6 with  $S_{500\mu m}$ >30mJy (~5x confusion limit;  $L_{FIR}$  ~ 10<sup>13</sup>  $L_{sun}$ ) to be **0.014 deg<sup>-2</sup>**, so one per ~70 deg<sup>2</sup> (models account for lensing)

define "ultra-red" source selection:  $S_{250\mu m} < S_{350\mu m} < (S_{500\mu m}/1.3)$  $\Rightarrow$  Arp 220, M82,... at z>6

 $\Rightarrow Find 0.24 deg^{-2} \text{ (initial ~30 deg^2)} \\ @S_{500\mu m} > 30 mJy$ 

⇒ Expect many high-z galaxies in the 1000 square degrees of all the Herschel surveys!

"hottest" candidate" S<sub>500μm</sub>/S<sub>350μm</sub>=1.45 & S<sub>500μm</sub> = 47 mJy

 $\Rightarrow$  let's try to get a redshift!

### **HFLS3 SPIRE 250**



### **HFLS3 SPIRE 350**



### **HFLS3 SPIRE 500**



## **HFLS3 SPIRE colour map**



### (sub)mm/radio interferometry

- Interferometric positions are needed for spectroscopic follow-up at other wavelengths
- We have observed HFLS3 with the SMA, PdBI, and CARMA in many bands at different angular resolutions



#### First Try: (Sub)Millimeter Position, Optical Spectrum



SMA/PdBI I mm continuum interferometry

 $\Rightarrow$  Precise position; << I"

Within <<1" of optically detected galaxy (WHT and GTC, PI Pérez-Fournon)

Keck/LRIS deep spectrum (PI Carrie Bridge)

⇒ faint low-mass emission line galaxy at z=2.1 ⇒ Nearby z=2.2 Ly- $\alpha$  emitter, not associated

**Background image from GTC/OSIRIS i-band (ITP, PI Pérez Fournon)** 

#### Second Try: (Sub)Millimeter Position, CO spectroscopy (CARMA)



CARMA CO spectroscopy

 $\Rightarrow$  detect CO line, consistent with CO 3-2 at z~2.1  $\Rightarrow$  weird properties, but perhaps time to move on?



### Third try: observations with all relevant facilities

See the details in the supplementary information of Riechers et al. 2013 Nature paper.

VIDEO of all the astronomical facilities used in this study: http://bia.iac.es/videos.php?tag=HFLS3&id=1&vid=155

- $\Rightarrow$  Herschel SPIRE, part of the HerMES survey, PIs Oliver and Bock
- ⇒ Herschel PACS, Open Time, PI Riechers
- ⇒ Combined-Array for Research in Millimeter-wave Astronomy (CARMA), PI Riechers
- $\Rightarrow$  Caltech Submillimeter Observatory (CSO), Z-spec, PI Bradford
- ⇒ IRAM Plateau de Bure Interferometer, Pls Riechers and Pérez-Fournon
- $\Rightarrow$  Jansky VLA (JVLA), PI Ivison
- ⇒ Submillimeter Array (SMA), PI Clements
- ⇒ IRAM 30m and Goddard-IRAM Superconducting 2-Millimeter Observer (GISMO), PI Pérez-Fournon
- ⇒ WHT (ACAM and LIRIS) and GTC (OSIRIS), PI Pérez Fournon
- ⇒ Keck Second Generation Near-Infrared Camera (NIRC2), Pls Fu and Riechers
- $\Rightarrow$  Keck Low-Resolution Imaging Spectrometer (LRIS), PI Bridge
- $\Rightarrow$  Wide-Field Infrared Survey Explorer (WISE), Preliminary Release Catalog
- $\Rightarrow$  Spitzer Space Telescope InfraRed Array Camera (IRAC), PI Vieira
- $\Rightarrow$  And also SCUBA2 and HST (lvison et al. 2013, Cooray et al. 2013, Laporte et al. 2013)

### **Atomic and molecular lines**



Figure S3: Atomic and molecular line emission towards HFLS3. CARMA, PdBI, and JVLA maps of

### **CSO Z-spec spectrum**



Figure S4: Tracers of the star-forming interstellar medium redshifted to the 1 mm window in HFLS3. CSO/Z-spec spectrum of HFLS3 with 10 r.m.s. error bars and tentative line identifications overlayed. The [CII], OH  ${}^{2}\Pi_{1/2} 3/2 - 1/2$ and NH<sub>3</sub> (3,K)a-(2,K)s features were independently confirmed (NH3 was only tentatively confirmed) through interferometric observations with CARMA and the PdBI. The spectrum shows an interloper line close to the redshifted frequency of CO J=13-12 which is not seen in interferometric observations with the PdBI (and thus unlikely to be associated with HFLS3)





### HFLS3: Warm, Dusty Starburst, not Luminous AGN

#### SFR of HFLS3 alone ~ 4.5x Σ(SFR<sub>UV</sub>) of all z=5.5-6.5 galaxies in HUDF

Very gas-rich, highly metal-enriched

Warm, lower dust optical depth than Arp 220

|                                                       | -                                                         | -                       |
|-------------------------------------------------------|-----------------------------------------------------------|-------------------------|
|                                                       | HFLS3                                                     | Arp 220*                |
| redshift                                              | 6.3369                                                    | 0.0181                  |
| M <sub>gas</sub> (M <sub>sun</sub> ) <sup>a</sup>     | (1.04+/-0.09) x 10 <sup>11</sup>                          | 5.2 x 10 <sup>9</sup>   |
| M <sub>dust</sub> (M <sub>sun</sub> ) <sup>b</sup>    | 1.31 <sup>+0.32</sup> - <sub>0.30</sub> x 10 <sup>9</sup> | ~1 x 10 <sup>8</sup>    |
| <i>M</i> ∗ (M <sub>sun</sub> ) <sup>c</sup>           | ~3.7 x 10 <sup>10</sup>                                   | ~3-5 x 10 <sup>10</sup> |
| M <sub>dyn</sub> (M <sub>sun</sub> ) <sup>d</sup>     | 2.7 x 10 <sup>11</sup>                                    | 3.45 x 10 <sup>10</sup> |
| <i>f</i> <sub>gas</sub> <sup>e</sup>                  | 40%                                                       | 15%                     |
| L <sub>FIR</sub> (L <sub>sun</sub> ) <sup>f</sup>     | 2.86 <sup>+0.32</sup> -0.31 x 10 <sup>13</sup>            | 1.8 x 10 <sup>12</sup>  |
| SFR (M <sub>sun</sub> yr <sup>-1</sup> ) <sup>g</sup> | 2,900                                                     | ~180                    |
| T <sub>dust</sub> (K) <sup>h</sup>                    | 55.9 <sup>+9.3</sup> -12.0                                | 66                      |



#### **Hubble Ultra Deep Field**

#### HFLS3: observations at short wavelengths

#### Optical to mid-infrared images of HFLS3

GTC/OSIRIS griz, WHT LIRIS Ks and Spitzer 3.6 and 4.5 um



**Figure S9:** Optical to mid-infrared images of the region around HFLS3. **a**–**g**,  $30^{"}\times30^{"}$  size regions in the optical *g*, *r*, *i*, *z* (**a**–**d**), near-infrared *K*<sub>s</sub> (**e**), and mid-infrared 3.6 and 4.5 µm bands (**f** and **g**). **h**–**n**, zoom-in on  $10^{"}\times10^{"}$  size regions in the same bands. Contours of the 1 mm continuum emission are overlayed on all panels. HFLS3 is not detected in the optical bands, but is detected in *K*<sub>s</sub> band and longwards. The emission close to HFLS3 is dominated by the foreground galaxy G1B in all bands.

### HFLS3: observations at short wavelengths

Optical (GTC) and near-IR observations (WHT LIRIS Ks and Keck NIRC2)



near-IR

**AO FWHM 0.1**"

### HFLS3: Giant "Maximum" Starburst, not Strongly Lensed SMG



7<sup>h</sup>06<sup>m</sup>48<sup>s</sup>0 47<sup>s</sup>8 47<sup>s</sup>6 Right Ascension (J2000)

Compact (~3.5 kpc), high-dispersion gas and dust reservoir

- $\Rightarrow$  No evidence for strong lensing morphology
- $\Rightarrow$  Lensing models based on nearby z=2.1 galaxy:  $\mu_L$ <1.2
- $\Rightarrow$  Galaxy is intrinsically very massive and luminous

High SFR surface density:  $\Sigma_{SFR} \sim 600 M_{sun} yr^{-1}$ 

 $\Rightarrow$  "maximum" starburst over few kpc responsible for high energy release

Consistent with models of CO,  $H_2O$ , and OH excitation

- $\Rightarrow$  Gas is warm and dense
- ⇒ Excitation consistent with starbursts, not AGN environments like Mrk 231

An extraordinary system, even compared to "typical" SMGs at lower redshift

### HFLS3

### measured and derived source properties

Table S4: Measured and derived source properties

| Parameter                     | Value                                                                     |
|-------------------------------|---------------------------------------------------------------------------|
| L'co                          | 1.04±0.09×10 <sup>11</sup> K kms <sup>-1</sup> pc <sup>2</sup>            |
| L <sub>co</sub>               | 5.08±0.45×10 <sup>6</sup> L <sub>sun</sub>                                |
|                               | 3.0±1.9×10 <sup>8</sup> L <sub>sun</sub>                                  |
|                               | 1.55±0.32×10 <sup>10</sup> L <sub>sun</sub>                               |
| L <sub>FIR</sub>              | 2.86 <sup>+0.32</sup> -0.31×10 <sup>13</sup> L <sub>sun</sub>             |
| M <sub>gas</sub> <sup>a</sup> | 1.0×10 <sup>11</sup> M <sub>sun</sub>                                     |
| M <sub>cl</sub> <sup>b</sup>  | 4.5×10 <sup>7</sup> M <sub>sun</sub>                                      |
| <i>М</i> н <sup>с</sup>       | 2.0×10 <sup>10</sup> M <sub>sun</sub>                                     |
| M <sub>dust</sub>             | 1.31 <sup>+0.32</sup> - <sub>0.30</sub> ×10 <sup>9</sup> M <sub>sun</sub> |
| M∗                            | 3.7×10 <sup>10</sup> M <sub>sun</sub>                                     |
| <b>M</b> <sub>dyn</sub>       | 2.7×10 <sup>11</sup> M <sub>sun</sub>                                     |
| SFR <sup>d</sup>              | 2,900 M <sub>sun</sub> yr⁻¹                                               |
| $\Sigma_{gas}$                | 1.4×10 <sup>4</sup> M <sub>sun</sub> pc <sup>-2</sup>                     |
| $\Sigma_{\sf SFR}$            | 600 M <sub>sun</sub> yr⁻¹kpc⁻²                                            |
| <b>f</b> <sub>gas</sub>       | 40%                                                                       |
| gas-to-dust ratio             | 80                                                                        |
| t <sub>dep</sub>              | 36Myr                                                                     |
| ε                             | 0.06                                                                      |
| d <sub>icin</sub>             | 3.4 kpc×2.9 kpc                                                           |
| d <sub>FIR</sub>              | 2.6 kpc×2.4 kpc                                                           |
| T <sub>dust</sub>             | 55.9 <sup>+9.3</sup> -12.0K                                               |
| β                             | 1.92±0.12                                                                 |
|                               | -                                                                         |

### How unique is HFLS3?

- Several hundred high-redshift (SPIRE-red) candidates in the HerMES, H-ATLAS and other surveys (HERS, HLS, etc)
- 38 red sources in 21 square degrees discussed in Dowell, Conley et al.
- A few objects with even more extreme properties than HFLS3
- The future: NOEMA, ALMA, HST, JWST, ELTs, etc.
- A good case for SPICA multi-band observations
- SPICA can provide a full view from the near-IR (optical rest frame) to the far-IR (mid-IR rest frame) of similar objects and their environments to much fainter luminosities

## Summary and open questions

- Massive, star-forming galaxies found with Herschel/SPIRE up to z = 6.34 (HFLS3, Riechers et al. 2013)
- This type of galaxies is not predicted in current galaxy formation models
- What is the formation mechanism?
- What are the physical properties?
- What is the environment in which they form?
- What can we learn about these galaxies and their environments with future facilities?
- We need a new, powerful infrared telescope: **SPICA!**



# Many thanks!

