A HIFI molecular inventory of oxygen-rich AGB stars 2 ñ

Matthias Maercker

Argelander Institut für Astronomie, Uni Bonn

Justtanont, K., Olofsson, H., Bergman, P. and the HIFISTARS team

Asymptotic Giant Branch stars

Stars between 0.8-8 Mo

- dormant C/O-core
- He-burning shell
- ➡ H-burning shell
- convective envelope
- pulsating atmosphere

Mass-loss rates of 10⁻⁷-10⁻⁴ M_oyr⁻¹

Expansion velocities of 10-20 km/s

build-up of large, circumstellar envelope (CSE)

effective producers of new elements and dust

AGB Circumstellar envelopes

What do we still want to know (in more detail)?

The chemistry of evolved stars

- nucleosynthesis inside the star
- mixing and dredge-up
- atmosphere chemistry, molecule formation
- dust formation and circumstellar chemistry

The dynamics of evolved stars

- wind velocities
- ➡ acceleration zone
- mass-loss mechanism

- ✓ chemistry in astronomy
- ✓ stellar yields
- ✓ chemical evolution of the ISM
- ✓ ingredients for new stars and planets

HIFI observations of M-type AGB stars

High sensitivity, high spectral-resolution observations between 500 - 1900 GHz

HIFISTARS guaranteed time key program P.I.: V. Bujarrabal

Source	#set	D	Mdot
		рс	$10^{-6} M_{\odot} yr^{-1}$
OH26.5+0.6	8	1370	260
AFGL 5379	8	580	200
IRC+10011	15	740	19
TX Cam	9	380	6.5
IK Tau	15	260	4.5
o Cet	9	107	0.25
R Dor	9	59	0.2
W Hya	16	77	0.08
R Cas	9	106	0.04

molecule	Eup	isotopologues
	K	with
H ₂ O	2400 - 50	¹⁷ O, ¹⁸ O
CO	750 - 100	¹³ C, ¹⁸ O
HCN	400 - 100	¹³ C
SiO	2300 - 200	²⁹ Si, ³⁰ Si
SO	500 - 200	
SO ₂	600 - 250	
SiS	2800	
OH	180	
NH_3	30	

M-type sources presented in Justtanont et al. 2012

Where does the emission come from?

Upper-state energy of a transition a rough tracer of the emission region

What do the lines tell us?

The presence of that molecule!

- chemical processes
- expansion velocities
- ➡ line profiles
 - ➡ excitation conditions
 - ➡ masers,
 - ➡ etc...

Justtanont et al. 2012

Expansion velocity profile

✓ wind acceleration

many lines in many sources

✓ mass-loss in M-type stars:

how is the wind initiated and accelerated? Woitke 2006 Höfner 2008

Expansion velocity profile

Radiative transfer modelling

For full radiative transfer modelling we need

- expansion velocity vs. radius
- ➡ temperature vs. radius
- radiation from the central source
- ➡ additional free parameters (abundances, CSE size, ...)

H2O cooling and model problems

The main heating and cooling terms in the inner envelope

- heating due to dust gas collisions
- ➡ cooling due to H₂O

Conclusions

- ✓ main target are high-excitation CO and H₂O lines
- ✓ detection of additionally 7 molecules, as well as isotopologues
 - chemistry in oxygen-rich AGB stars
- ✓ HIFI data probes different excitation regions
 - physics of the circumstellar envelope

✓ H₂O modelling important, H₂O-cooling critical

- difficult, with a likely change of previous results
- but it's possible because of many H₂O lines in many sources!

Conclusions

