Water Abundance in Protostellar Envelopes

The Relation Between Water Gas and Ice

M. Schmalzl

E. van Dishoeck
R. Visser
T. Albertsson
C. Walsh
J. Mottram
L. Kristensen
and the WISH team

WISH

Leiden University

Leiden University U Michigan MPIA Heidelberg Leiden University Leiden University CfA Cambridge

The abundance of **volatile** oxygen in the ISM is $X_{\rm O} = 3.2 \ 10^{-4}$

Meyer+ (1998), ApJ...493..222

In the *cold environment*, basically all the **volatile oxygen** should be driven into **water ice** e.g., Hollenbach+ (2009), ApJ...690.1497H

The abundance of volatile oxygen in the ISM is $X_{\rm O} = 3.2 \ 10^{-4}$

Meyer+ (1998), ApJ...493..222

In the *cold environment*, basically all the **volatile oxygen** should be driven into **water ice** e.g., Hollenbach+ (2009), ApJ...690.1497H

Öberg+ (2011), ApJ...740..109

THE GOAL OF THIS PROJECT:

• Understand the key processes that shape the **water vapour** line profiles and **water ice** abundances in protostellar envelopes

THE SCIENCE TARGETS:

• 9 protostellar cores with *Herschel* observations of water vapour, and measured water ice column densities

Parameterised **drop abundance profiles** are a fast way to determine the **water vapour** abundance structure

Parameterised **drop abundance profiles** are a fast way to determine the **water vapour** abundance structure

But, ...

• ... they cannot consistently reproduce all the **water vapour** lines as observed by *Herschel*

Mottram+ (2013), A&A, accepted for publication

- ... they do not reveal the **physical processes** leading to that profile
- ... they are not able to determine the abundance structure of **water ice**

* WISH Parameterised **drop abundance profiles** are a fast way to determine the **water vapour** abundance structure

But, ...

• ... they cannot consistently reproduce all the **water vapour** lines as observed by *Herschel*

Mottram+ (2013), A&A, accepted for publication

- ... they do not reveal the **physical processes** leading to that profile
- ... they are not able to determine the abundance structure of **water ice**

OUR ANALYSIS TOOL:

• A dedicated *physics-motivated* simplified chemical network

× WISH

Simple water chemistry network does work for **water vapour** profiles in *pre-stellar cores*

H09 - Hollenbach+ (2009), ApJ...690.1497H

C12 - Caselli+ (2012), ApJ...759L..37

Simple water chemistry network does work for **water vapour** profiles in *pre-stellar cores*

Caselli+ (2012), ApJ...759L..37

The **Simplifed Water Network (SWaN)** is an attempt to reliably determine the abundance profiles of **water vapour** and **water ice** in **cold protostellar envelopes**.

The **Simplifed Water Network (SWaN)** is an attempt to reliably determine the abundance profiles of **water vapour** and **water ice** in **cold protostellar envelopes**.

The **Simplifed Water Network (SWaN)** is an attempt to reliably determine the abundance profiles of **water vapour** and **water ice** in **cold protostellar envelopes**.

The **Simplifed Water Network (SWaN)** is an attempt to reliably determine the abundance profiles of **water vapour** and **water ice** in **cold protostellar envelopes**.

The **Simplifed Water Network (SWaN)** is an attempt to reliably determine the abundance profiles of **water vapour** and **water ice** in **cold protostellar envelopes**.

The **Simplifed Water Network (SWaN)** is an attempt to reliably determine the abundance profiles of **water vapour** and **water ice** in **cold protostellar envelopes**.

Water vapour and water ice abundance profiles of cold protostellar envelopes with SWaN:

Schmalzl+, in prep.

WISH

WISH

WISH

WISH

WISH

WISH

WISH

WISH

WISH

Water vapour and water ice abundance profiles of cold protostellar envelopes with SWaN: 10^{-4} 10^{-5} 10^{-6}

WISH

model	$X_{\rm H_2O}$	$X_{\text{s-H}_2\text{O}}$
	(10^{-9})	(10^{-5})
SWaN	3.1	6.4
V11	7.0	7.0
A13	8.0	10.0
W13	4.9	7.8

Schmalzl+, in prep.

model	$X_{\rm H_2O}$	$X_{\text{s-H}_2\text{O}}$
	(10^{-9})	(10^{-5})
SWaN	3.1	6.4
V11	7.0	7.0
A13	8.0	10.0
W13	4.9	7.8

Recall: Abundance of volatile oxygen $X_{\rm O} = 3.2 \ 10^{-4}$

 $\lfloor 01$ ${
m H_2O(1_{10})}$

$$N_{\rm H_2} = 9.9 \ 10^{22} \,\rm cm^{-2} \qquad t = 0.1 \,\rm Myr$$

$$M_{\rm env} = 0.2 \,\rm M_\odot \qquad G_{\rm isrf} = 1.0$$

$$L_{\rm bol} = 2.2 \,\rm L_\odot \qquad G_{\rm cr} = 10^{-4}$$

 $X_{s-H_2O}: 5.5 \, 10^{-5}$ $t = 0.1 \, \text{Myr}$ $X_{H_2O}: 5.8 \, 10^{-9}$ $G_{isrf} = 1.0$ $G_{cr} = 10^{-4}$

 $\lfloor 01$ ${
m H_2O(1_{10})}$

$$N_{\rm H_2} = 2.5 \ 10^{22} \,{\rm cm}^{-2}$$
 $t = 0.1 \,{\rm Myr}$
 $M_{\rm env} = 2.0 \,{\rm M}_{\odot}$ $G_{\rm isrf} = 100$
 $L_{\rm bol} = 3 \,{\rm L}_{\odot}$ $G_{\rm cr} = 10^{-4}$

wish

wish

wish

The **water vapour emission profiles** of ground-state transitions can be tweaked by changing ...

- ... **Doppler-**β to modify the width of emission/absorption features
- ... the **radial velocity** to modify the position of emission/absorption features
- ... **FUV-ISRF** to modify the abundance at the core edge
- ... **FUV-CR** to modify the abundance at intermediate depth
- ... the **time** to decrease the abundance (as a function of density)

In contrast to the **water vapour**, the **water ice** abundances are rather insensitive to FUV field and/or time

In contrast to the **water vapour**, the **water ice** abundances are rather insensitive to FUV field and/or time

Ice Column Densities from: **Zasowski+** (2009), ApJ...694..459; **Boogert+** (2008), ApJ...678..985 Temperature and Hydrogen Density Profiles from **Kristensen+** (2012) A&A...542A...8

In contrast to the **water vapour**, the **water ice** abundances are rather insensitive to FUV field and/or time

Ice Column Densities from: **Zasowski+** (2009), ApJ...694..459; **Boogert+** (2008), ApJ...678..985 Temperature and Hydrogen Density Profiles from **Kristensen+** (2012) A&A...542A...8

- ... not more than ~25% of the **oxygen** is initially in the form of **water ice**
- ... oxygen freezeout in regions T > 15 K is inhibited

The **oxygen budget** in the dense intra-cloud medium (ICM) is apparently incomplete, with ~50% being in the form **Unidentified Depleted Oxygen (UDO)**

Whittet (2010), ApJ...710.1009

From the **benchmarking of the chemical networks** we can identify where the **oxygen** went

 We understand why in protostellar cores volatile oxygen is not fully driven into water ice

• The water gas/ice ratio is changing along the line-of-sight, and depends on the source structure & FUV field

We see that the water
vapour emission profiles are an invaluable tracer for FUV
field strengths (both CRinduced and ISRF)