Herschel sheds light on Lyman Break Galaxies at z > 3

Outline:

The importance of dust at high-z
 Star formation histories (SFHs) and optical/near-IR SED modelling

- Samples and data
- Stacking technique

▶ Pan-chromatic SEDs of z~3, 4, 5, 6 LBGs

 \blacktriangleright constraints on LIR/LUV, the IRX- β relation and SFHs

Summary & Outlook

Thomas R. Greve (UCL) Daniel Schaerer (Geneva) Miroslav Zavadsky-Dessauges (Geneva) + LESS TEAM

The importance of dust at high redshifts

- Inferring the total (obscured and unobscured) Cosmic SFRD(z)
- ▶ The dust-content of normal star forming galaxies at high-z
- **b** Dust correction from rest-frame UV-colours (the IRX- β relation)

The importance of dust at high redshifts

- Delineating the evolution of the sSFR at z > 3
- Correct UV/Optical/Near-IR SED modeling is crucial many pitfalls!

Hyper-z SED/photo-z tool

- includes nebular emission lines
- \blacktriangleright Salpeter IMF 0.1–100M $_{\odot}$
- ► GALEXV, Bruzual & Charlot (2003) synthesis models
- Star formation histories (SFHs)

Fit parameters:

- redshift, z
- \blacktriangleright metallicity, Z/Z $_{\odot}$ (of stars and gas)
- ▶ Age, t
- Dust attenuation, Av
- Stellar mass, M_{star}
- Star formation rate, SFR

L_{UV}, UV-slope(β), L_{IR}

We can use observational constraints on LIR to distinguish between SFHs

Star formation histories (SFH)

ID	SF history	Functional form	Parameters	Color
A = DEC	exp. declining	SFR $\propto \exp^{-t/\tau}$	<i>t</i> , τ	green
$\mathbf{B} = \mathbf{R}\mathbf{E}\mathbf{F}$	constant	SFR = const.	$t \ge 50 \text{ Myr}$	black
C = RIS	rising	Finlator+2011	t	blue
D	exp. rising	SFR $\propto \exp^{+t/\tau}$	<i>t</i> , <i>τ</i>	red
Е	delayed	SFR $\propto t \exp^{-t/\tau}$	<i>t</i> , τ	yellow

IR luminosity, L_{IR}:

- Modelling the SEDs of 705 B-dropouts (Schaerer+13)
- > Accurate determination of L_{IR} may help us distinguish between SFHs

Dust exinction, Av:

► Significant scatter in A_v and systematic dependencies on SFHs

▶ L_{IR}/L_{UV} measures the dustattenuation, f_{UV}

Measurements of L_{IR}/L_{UV} may allow us to distinguish between SFHs

The SFR-Mstar relation:

► Large scatter and systematic dependencies on SFHs

► A well-defined 'main sequence' of star forming galaxies?

Expressing SFR in terms of the observables L_{IR} and L_{UV}, the scatter diminishes

ESA/ESTEC, Noordwijk, The Netherlands, Oct 2013

The Extended Chandra Deep Field South (ECDF-S)

▶ 30'×30' field (RA: 03h30m Dec: -27d40m)

Multi-λ coverage:

► UBVizJHK+IRAC GOODS-MUSIC catalogue (Santini+09) (Ks ~ 23.8)

► Far/Mid-IR 24, 70, 160µm MIPS/Spitzer (FIDEL), and 70, 100, 160µm PACS/Herschel (PeP)

▶ Submm: 250, 350, 500µm SPIRE/Herschel (HerMES) and LABOCA 870µm (Weiss+09)

Radio: VLA 1.4GHz, GMRT 610MGz (Ivision+10)

Sample selection

- UBVizJHK+IRAC GOODS-MUSIC catalogue
- Hyper-z SEDs/photo-z's (de Barros+12)
 - SFH = constant, declining, rising
 - \blacktriangleright z, M_{star}, L_{UV}, L_{IR}, β ,...

▶ U-, B-, V-, and i-dropouts: <zphot> ~ 3.3, 3.9, 4.9, 6.0

Far-IR/submm imaging data

- ► 870µm: LABOCA map (LESS)
- ► $\sigma \sim 1.1 \text{mJy/beam}$
- ► Beam FWHM~19.2"
- ► 126 submm sources (SNR>3.7)

ESA/ESTEC, Noordwijk, The Netherlands, Oct 2013

U-drop outs V-drop outs SMGs B-drop outs i-drop outs

Far-IR/submm imaging data

250, 350, 500µm: SPIRE maps (HerMES)
σ ~ 4.8, 6.0, 6.3mJy/beam

▶ Beam FWHM~18.2, 24.9, 36.3"

U-drop outs B-drop outs i

V-drop outs SMGs i-drop outs

Far-IR/submm imaging data

- ▶ 70, 100, 160µm: PACS maps (PeP)
- $\sigma \sim 0.2 0.6 \text{mJy/beam}$
- ▶ Beam FWHM~5.7, 6.7, 10.5"
- ▶ 468, 1189, 1240 sources with S/N > 3

Stacking 'Average' pixel values: |

$$\langle I \rangle = \frac{\sum \frac{I_i}{\sigma_i^2}}{\sum \frac{1}{\sigma_i^2}}$$

$$\frac{1}{\sigma_{\langle I\rangle}^2} = \sum \frac{1}{\sigma_i^2}$$

Issues:

 <u>Confusion</u> of neighbouring sources will flux contaminate each other

Clustering of sources on scales < beam can artificially boost the stacked signal

Global deblending:

 $egin{aligned} n_0 + lpha_{00}I_0 + lpha_{01}I_1 + lpha_{02}I_2 &= f_0 \ n_1 + lpha_{10}I_0 + lpha_{11}I_1 + lpha_{12}I_2 &= f_1 \ n_2 + lpha_{20}I_0 + lpha_{21}I_1 + lpha_{22}I_2 &= f_2 \end{aligned}$

$$\alpha_{ij} = \exp(-r_{ij}^2/2\sigma^2)$$
$$\sigma = FWHM/2.3548$$

W e b b + 0 3 ; G r e v e + 1 0 Kurczynski+10, Viero+11 targetsnon-targets

Stacking 'Average' pixel values:

Issues:

 <u>Confusion</u> of neighbouring sources will flux contaminate each other

Clustering of sources on scales < beam can artificially boost the stacked signal

Global deblending:

 $egin{aligned} n_0 + lpha_{00}I_0 + lpha_{01}I_1 + lpha_{02}I_2 &= f_0 \ n_1 + lpha_{10}I_0 + lpha_{11}I_1 + lpha_{12}I_2 &= f_1 \ n_2 + lpha_{20}I_0 + lpha_{21}I_1 + lpha_{22}I_2 &= f_2 \end{aligned}$

$$\alpha_{ij} = \exp(-r_{ij}^2/2\sigma^2)$$
$$\sigma = FWHM/2.3548$$

Webb+03;Greve+10 Kurczynski+10, Viero+11

 $\|$

ratio

2

0.5

Diameter [arcmin]

2

Pan-chromatic SEDs of LBGs at z~3,4,5,6

L_{IR}: stacking results vs. model predictions

Dust obscuration vs. M_{star}

Dust obscuration vs. z

Results: dust obscuration vs. L_{UV}

Results: dust obscuration vs. L_{UV}

Results: dust obscuration vs. UV-slope

Summary

 Deep FIR/submm detections of z > 3
 LBGs will play an important role in constraining their SFHs

 Despite significant challenges, stacking is a useful avenue to explore dust contents of z > 3 LBGs

> Via stacking we have obtained panchromatic SEDs of $z \sim 3$, 4, 5, 6 LBGs

➤ We have made the first attemps at constraining their SFHs via stacking. This is very challenging!

▶ The stage is set for ALMA!

Summary

 Deep FIR/submm detections of z > 3
 LBGs will play an important role in constraining their SFHs

 Despite significant challenges, stacking is a useful avenue to explore dust contents of z > 3 LBGs

> Via stacking we have obtained panchromatic SEDs of $z \sim 3$, 4, 5, 6 LBGs

▶ We have made the first attemps at constraining their SFHs via stacking. This is very challenging!

▶ The stage is set for ALMA!

