Galaxy Evolution from the Herschel + HST CANDELS programs

Hanae Inami (NOAO)

M. Dickinson, D. Elbaz, B. Magnelli, P. Popesso, I. Valtchanov, D. Coia, J. Kartaltepe, J. Pforr, CANDELS team

Galaxy Evolution

- The peak era of galaxy growth took place at z~1-3
 - Dusty star formation
- SFRD of (U)LIRGs increase dramatically towards higher redshifts.

The CANDELS project

- Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (PIs: S. Faber & H. Ferguson)
- HST ACS & WFC3 deep imaging for GOODS-S and N, EGS, UDS, and COSMOS
 - High resolution (galaxy structure)
 - Deep imaging (detect all Herschel counterparts)

- GOODS-Herschel (PI D. Elbaz, OTKP)
 - HeDaM Herschel Database in Marseille

http://hedam.oamp.fr/GOODS-Herschel/index.php

- CANDELS-Herschel (PI M. Dickinson, OT2)
 - COSMOS & UDS
 - PACS & SPIRE
 - Fully cover the CANDELS WFC3 fields
- PEP & HerMES
 - Coverage of the CANDELS fields

- Deepest 100-500µm data
 - Typical star-forming galaxies up to z~2
- Covering 4/5 CANDELS fields
 - Improved statistics and good control over cosmic variance
 - Increase accessible fields from ALMA
 - GOODS-S, UDS, & COSMOS

- Deepest 100-500µm data
 - Typical star-forming galaxies up to z~2
- Covering 4/5 CANDELS fields
 - Improved statistics and good control over cosmic variance
 - Increase accessible fields from ALMA
 - GOODS-S, UDS, & COSMOS

Controlling cosmic variance: Number counts (160µm)

IR luminosity functions

- Herschel measures near the peak of the FIR dust emission, minimizing uncertainties in the bolometric corrections.
- Good control over cosmic variance
- Increased number of typical SF galaxies ($\leq L_{IR}^*$)
 - Constrain Faint-end slope
 - At z~1.5
 - GOODS-H only: ~100 sources
 - GOODS-H + CANDELS-H (UDS+COSMOS): ~180 sources

IR luminosity functions

Evolution in LFs

Inami et al. (in prep.)

"Main Sequence" and Starburst Galaxies

Galaxy Structure

SFR/Stellar Mass Relation

See poster by Kartaltepe (Session A, P23)

Kartaltepe et al. 2012

Star Formation Rates: Optical/NIR SEDs vs. IR

- SFR estimates using SED fitting
 - CANDELS Multi-wavelength catalogs
 - Optical to IR (Spitzer IRAC)
 - CANDELS spec-z + photo-z (Dahlen et al. 2013)
 - Maraston 2005 based templates
 - Fitting setups as in Pforr et al. 2012
 - Calzetti reddening

Star Formation Rates: Optical/NIR SED-fit vs. LIR

Star Formation Rates: Optical/NIR SED-fit vs. LIR

Summary

• 4/5 CANDELS fields have the deepest 100-500µm data

- Improved statistics and good control over cosmic variance
- 3x more typical SF galaxies can be observed from ALMA
- Dust-obscured star formation at high redshifts
 - IR luminosity functions
 - Better constrain on IR LF < L_{IR}^*
 - Direct measurement of the faint-end slopes at $z \leq 1$
 - SFR measurements using optical SED fits and LIR
- Galaxy structure from HST WFC3 H-band data
 - "Main sequence" vs. starburst