Wrap-up: The Solar System and its Evolution

Paul Hartogh

Max Planck Institute for Solar System Research (hartogh@mps.mpg.de)

TNO Fundamental Properties: Size & Albedos

Müller et al. 2010, Lellouch et al. 2010, Lim et al. 2010 Mommert et al. 2012, Vilenius et al. 2012, Santos-Sanz et al. 2012 Fornasier et al. 2013, Duffard et al. 2013, Vilenius et al. 2013

October 2013, Noordwijk, N

TNOs

- Diameter and albedo of 115 objects with sizes from 100 to 2400 km (Pluto/Eris) and albedos from 3 to 100 %.
- Very different from the main-belt objects. Very large diversity. Object properties point to different evolution processes for different dynamic classes.
- Very high albedos require resurfacing process to maintain such a high albedo over longer timescales. Cryovolcanism for the large and high albedo objects?

TNOs

- Densities for about 25 binary systems: 0.4 ... 2.5 g/cm3: different formation mechanism?
- Thermal lightcurves (for 5 objects) show rotationally deformed bodies.
- Thermal properties point towards very rough, porous, extremely low thermal conductivity surfaces.
- TNOs have very low thermal inertia:
 - Mean value = $2.5 \text{ Jm}^{-2}\text{s}^{-1/2} \text{ K}^{-1}$
 - Decreases with increasing heliocentric distance
- Spectral emissivity of TNOs decreases with increasing wavelength

Classical TNO: 50000 Quaoar

NEATM RESULTS: p_v (%) = 12.7 ± 1.0 $D = 1074 \pm 38$ km $\eta = 1.73 \pm 0.08$ η mean = 1.47 ± 0.43 (19 classicals,

from Vilenius et al 2012)

Previous size estimates: Hubble direct: 1260 ± 190 km (Brown & Trujillo 2004); 870±70 km (Frazer &Brown 2010) Spitzer radiometric: 844 ± 207 km (Stansberry et al. 2008) Spitzer radiometric: 908 ± 118 km (Brucker et al. 2009)

New occultation effective size estimate: 1111 ± 5 km (Braga-Ribas et al. 2013)

Quaoar is a binary system of known mass $(1.6 \pm 0.3) \times 10^{21}$ kg with a smaller companion, Weywot.

With the size determined from Herschel data we derive a density of 2.2 \pm 0.5 g/cm³, similar to that of Pluto (Frazer & Brown (2010) got an unlikely density of 4.2 \pm 1.3 g/cm³, from their HST Quaoar size estimation). Assuming the same albedo for the 2 bodies, we derive a diameter of 1070 \pm 38 km for Quaoar, and 81 \pm 11 km for Weywot.

Ammonia in comets with HIFI

$NH_3/H_2O \sim 1/200$ Biver et al, 2012

HIFI: 3 water transition in C/2008 Q3 (Garradd) constraining water excitation models

First D/H in Jupiter family comet

103P/Hartley 2

Observed spectra:

The Universe Explored by Herschel, 15-18 October 2013, Noordwijk, NL

S/N = 60

Analysis of the observations

- Excitation model : collisions with H₂O, electrons and infrared pumping, gas temperature determined by other observation (e.g. methanol lines at IRAM/CSO/SMT)
- \rightarrow the HDO/H₂¹⁸O production rate ratio is not very sensitive to the model parameters (similar transition: J = 1₁₀-1₀₁)
- Hypothesis : ¹⁶O/¹⁸O = 500 (+/- 10%) (VSMOW) (520±30 in 4 comets with Odin)

 $D/H(VSMOW) = 1.558 \pm 0.001 \times 10^{-4}$

Deuterium in Solar System after Herschel

D/H in Uranus and Neptune

- D/H in Jupiter and Saturn protosolar, i.e. main component is hydrogen
- D/H Uranus and Neptune substantially higher => equilibrated water/hydrogen and possibly organic molecules (highly D-enriched in interstellar medium): "Ice giants"
- D/H in hydrogen may be used to constrain the Denrichment of ices or the amount of ices for a given D/H.

The internal structure of the ice giants

- 1. Upper atmosphere, top clouds
- 2. Atmosphere consisting of hydrogen, helium and methane gas
- 3. Mantle consisting of water, ammonia and methane ices
- 4. Core consisting of rock (silicates and nickel-iron

Ice Giants may be Rock Giants

- PACS values show the same D/H for both planets
- PACS values smaller than ISO values:
 - Neptune: 41 ± 4 ppm (65 ppm)
 - Uranus: 44±4 ppm (55 ppm)
- Formation models (e.g. Podolak, 1995) predict 70-100 % ice and a rather small amounts of rocky (SiO₂) material. Based on these models the very low (64 ppm) D/H of ices are derived.
- Assuming cometary (150-300 ppm) isotopic ratios we get an ice mass fraction of only 14-32 %, meaning that the planets are rock-dominated.

Lellouch et al, 2010, A&A; Feuchtgruber et al., A&A 2013

First detection of the Enceladus water torus

The Universe Explored by Herschel, 15-18 October 2013, Noordwijk, NL

Conclusions Enceladus water torus

- Extension about 10 Saturn radii (R_s)
- Highest density around a distance of 4 R_s
- Thickness about 50000 km
- About 3 % of the water produced by Enceladus rains into the upper atmosphere of Saturn
- Enceladus is rather likely the source of stratospheric water in Saturn and Titan

Hartogh et al, A&A 2011

Surprise: Unexpected detection of hydrogen isocyanide a specie not previously identified in Titan's atmosphere

0.04

The Universe Explored by Herschel, 15-18 October 2013, Noordwijk, NL

1.04

75.3 75.4 75.5

Wavelength (μm)

1.02

1.1

.05

66.4 66.45 66.5

Wavelength (μm)

Line/Continuum

1.03

1.02

1.01

0.99

108

Wavelength

108.5

Isotopic ratios ¹⁴N/¹⁵N in HCN and ¹⁶O/¹⁸O in CO

Measurement	¹⁴ N/ ¹⁵ N	Reference	
IRAM-30m	60-70	Marten et al. 2002	
SMA	72 ± 9 or 94 ±13	Gurwell 2004	
Cassini/CIRS	56 ± 8	Vinatier et al. 2007	
Huygens/GCMS (in N ₂)	183 ± 5	Niemann et al. 2010	
Herschel/SPIRE	76 ± 6	Courtin et al. 2012	
Photolytic fractionation of ¹⁴ N ¹⁴ N and ¹⁴ N ¹⁵ N (Earl			

Measurement	¹⁶ O/ ¹⁸ O	Reference		
JCMT	~250	Owen et al. 1999 (never-published)		
SMA	400 ± 41	Gurwell 2008 (unpublished)		
Herschel/SPIRE	380 ± 60	Courtin et al. 2012		

First documented measurement of Titan's ¹⁶O/¹⁸O in CO, value 24% lower than the Terrestrial ratio (Earth = 500) \rightarrow ¹⁶O/¹⁸O depletion in Titan

Precipitation of 100 of 02 from the inceladus Torus

SL9 impacts 1994 (VIS/IR) at 44 S

Credits: NASA-HST/ U. Hawaii

Water distribution observed by PACS

SL9 impact main source of stratospheric water in Jupiter

- No feature found indicating a satellite/ring source
- Vertical distribution does not fit IDP source
- Horizontal distribution of water favors SL9 impact, hemispheric asymmetry: Globally averaged column density 3x10¹⁵cm⁻² with 2-3 times more water in the south.

Cavalie et al., A&A 2013

Ganymede and Callisto leading sides

Ganymede and Callisto have leading sides water atmosphere

The Universe Explored by Herschel, 15-18 October 2013, Noordwijk, NL

JUICE-SWI: Ganymede, SSL 10, HDO limb spectra simulation

Detection of water vapor around dwarf planet Ceres

557 GHz H_2O line detected with HIFI in October 2012 and March 2013 Kueppers et al., Nature, in press

Detection of water vapor around dwarf planet Ceres

Variation of the signal along Ceres's rotation

LETTER TO THE EDITOR

An upper limit for the water outgassing rate of the main-belt comet 176P/LINEAR observed with *Herschel*/HIFI*

M. de Val-Borro^{1,**}, L. Rezac¹, P. Hartogh¹, N. Biver², D. Bockelée-Morvan², J. Crovisier², M. Küppers³, D. C. Lis⁴, S. Szutowicz⁵, G. A. Blake⁴, M. Emprechtinger⁴, C. Jarchow¹, E. Jehin⁶, M. Kidger⁷, L.-M. Lara⁸, E. Lellouch², R. Moreno², and M. Rengel¹

¹ Max Planck Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany

² LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France

³ Rosetta Science Operations Centre, ESAC, European Space Agency, 28691 Villanueva de la Cañada, Madrid, Spain

⁴ California Institute of Technology, Pasadena, CA 91125, USA

⁵ Space Research Centre, Polish Academy of Sciences, Warsaw, Poland

⁶ Institute d'Astrophysique et de Geophysique, Université de Liège, Belgium

⁷ Herschel Science Centre, ESAC, European Space Agency, 28691 Villanueva de la Cañada, Madrid, Spain

⁸ Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain

Received 6 August 2012; Accepted 25 August 2012

Main belt extends from about 2.5 – 3.6 AU. MBCs probably originate in the outer main belt. Comet-like (dust) tails observed. Origin of tail not clear. Tails are usually volatiles driven, however difficult to understand for main belt comets. Search for volatiles with Herschel

Upper limit of water production $< 4 \times 10^{25}$ molecules/s

Mars: Oxygen isotopic ratios telluric

Upper limits on HCl and H₂O₂, Ls=78°

< 200 ppt

Hartogh et al. 2010b, A&A

Fall 2011: detection of H₂O₂! Ls=10°

The Universe Explored by Herschel, 15-18 October 2013, Noordwijk, NL

O2 at 1812 GHz Ls=47°

HIFI/Herschel, Dec 22, 2011, South – Ls = 47° - O₂ = 1600 ppm

T. Encrenaz et al.: no detectable spatiotemporal variation

First submm detection of O₂

Fit of constant profile provides volume mixing ratio of 1400 ppm. However residual indicates that profile is not constant with altitude.

Hartogh et al. 2010b, A&A

The Universe Explored by Herschel, 15-18 October 2013, Noordwijk, NL

First results: vertical profile of O₂ on Mars, TBC

The Universe Explored by Herschel, 15-18 October 2013, Noordwijk, NL

H_2O and HDO at $Ls = 78^{\circ}$

Vertical profile of water at $Ls = 78^{\circ}$

The Universe Explored by Herschel, 15-18 October 2013, Noordwijk, NL

Summary

- Herschel provided exciting solar system data (3 % of the total Herschel observing time)
- Numerous new discoveries:
 - new molecules (e.g. in Titan)
 - new atmospheres (e.g. Ceres, Ganymede, Callisto)
 - new water cloud (Enceladus water torus)
 - ocean like water in comets (e.g. 103P Hartley 2)
 - new views about planet formation (e.g. Uranus/Neptune)
 - new exciting questions (e.g. oxygen on Mars)
- More to come soon....