Molecular Oxygen in the ISM: An Astrochemical Dilemma

Herschel Oxygen Project "HOP"

Paul F. Goldsmith Jet Propulsion Laboratory, California Institute of Technology

for the HOP Team with special thanks to Jo-Hsin Chen, Ron Snell, Darek Lis, Umut Yildiz, and Michael Kaufman The Universe as seen by Herschel October 18, 2013

© 2013 California Institute of Technology

Herschel Oxygen Project

Paul Goldsmith (NASA JPL), U.S. PI; René Liseau (Chalmers Univ.), European PI

Tom Bell	Astrobiology Inst. Madrid	Franck Le Petit	Obs. Paris
Arnold Benz	ETH, Zurich	Di Li	NAO China
Edwin Bergin	Univ. Michigan	Darek Lis	Caltech
John Black	Chalmers Univ.	Gary Melnick	Center for Astrophys.
Simon Bruderer	ETH, Zurich	Zsofia Nagy	SRON, Groningen
Paola Caselli	Univ. Leeds	David Neufeld	Johns Hopkins Univ.
Emmanuel Caux	CESR Toulouse	Henrik Olofsson	Obs. Paris
Jo-Hsin Chen	NASA JPL	Laurent Pagani	CNRS, Paris
Pierre Encrenaz	Univ. Paris	Evelyne Roueff	Obs. Paris
Edith Falgarone	CNRS, Paris	Aage Sandqvist	Stockholm Univ.
Maryvonne Gerin	CNRS, Paris	Ronald Snell	Univ. Massachusetts
Javier Goicoechea	Obs. Paris	Floris van der Tak	SRON, Groningen
Ake Hjalmarson	Onsala Space Obs.	Ewine van Dishoeck	Leiden Univ.
David Hollenbach	NASA Ames	Charlotte Vastel	CESR, Toulouse
Michael Kaufman	San Jose State Univ.	Serena Viti	Univ. College London
Bengt Larsson	Stockholm Obs.	Umit Yildiz	NASA JPL
Jacques Le Bourlot Univ. Paris			

Why O₂ and Why Observe this Molecule at Submillimeter Wavelengths?

•Astrophysical Importance – O₂ is a simple molecule whose gas-phase chemistry is thought to be well understood

•Large predicted abundance - in relevant situations $X(O_2) = n(O_2)/n(H_2)$ should be as large as $3x10^{-5}$ making O_2 a major oxygen reservoir

•Critical O2 transitions fall in the THz range

•O₂ was a major objective of SWAS and Odin satellites, which gave very surprising results. This has kept interest alive, with result that O₂ is a target of Herschel projects (OTKP, OT1, OT2)

Part of a Bigger Question: Oxygen is 3rd Most Abundant Element. Where is it in the Dense ISM?

Gas Phase Chemistry for O, H₂O, O₂ and CO is Relatively Simple

Standard Gas-Phase Chemistry Models Predict Large Abundance of O₂

Reality Intrudes:

X(O₂) in IS Clouds from Odin & SWAS is More Than 100X Below that Predicted by Gas-Phase Chemistry

Why is the O₂ Abundance so Low? - I

Dynamical Mixing (circulation)

Chièze & Pineau des Forêts 1989

Turbulent Diffusion

Transport due to concentration gradient K = turbulent diffusion coefficient = $\langle V_t L \rangle$ Turbulent velocity ~ 1 km s⁻¹ Mixing length due to turbulence very uncertain. K = 1x10²³ cm²s⁻¹ (?)

Why is the O₂ Abundance so Low?

Depletion of molecules onto dust grain surfaces in cold clouds (e.g. Bergin+ 2006; Maret & Bergin 2007)

Same process will occur for O atoms, reducing gas-phase oxygen to form O_2

Photodestruction – Limits O₂

abundance at cloud edges

Hollenbach et al. (ApJ 2009) combine gas phase photochemistry with grain surface freezeout in cloud interior.

The Herschel Oxygen Project (HOP) – A Herschel Open Time

Key Project to search for O_2 in variety of such environments to detect and measure molecular oxygen, and improve our understanding of astrochemistry

- Deep searches in three transitions of O₂
 487 GHz, 774 GHz, and 1121 GHz
- Probe a variety of sources and environments
- Test chemical models
- Source list pruned after early observations showed that O₂ is a challenge even for HIFI

HOP Sources

OT1 Orion Peak A (Hot Core) OT2 Rho Oph mapping – Larsson et al. poster

3 O₂ Transitions Observed at 2 Positions in Ori A

Beam Sizes: 487 GHz 44" 774 GHz 30" 1121 GHz 20" Integration times up to 8 hr 3 transitions observed with $v_{lsr} = 11$ km s⁻¹ $\delta v = 2.9$ km s⁻¹

First MULTITRANSITION DETECTION OF MOLECULAR OXYGEN IN THE ISM

Far more line confusion @ Peak A than H_2 Peak 1. Green = CH₃OCHO; Blue – U-line 487 GHz and 774 GHz lines detected @ 11 kms⁻¹ 5 kms⁻¹ feature is primarily CH₃OCHO 11 kms⁻¹ feature is ~ same intensity as at H₂ Peak 1 **SOURCE** *IS NOT* **PEAK A OR HOT CORE**

Possible Explanations for O₂ Seen in Orion

If at Peak A/Hot Core: Dust heated by nearby massive stars:

Desorb water ice mantles; initially, there is spike in gas-phase $X(H_2O)$, but eventually we regain "standard" gas-phase chemistry with large $X(O_2)$

Almost all species having emission in 10 - 12 km s⁻¹ range have local maximum at Peak A/Western Clump/MF4/ Cnt D location

BUT THE INTENSITY OF 774 GHz LINE SHOULD HAVE BEEN > 10X GREATER AT PEAK A THAN AT H_2 PEAK 1

MEASUREMENTS SHOW ABOUT THE **SAME** INTENSITY! - Peak A/ Hot Core is NOT the source!

Where is the source?

Combined analysis of two sets of spectra gives best fit (for a single source) of size ~ 8" located about 7" from H_2 Peak 1

Relatively LOW Excitation Temperature, 30 K – 50 K. Since in LTE, this is from RELATIVELY COOL GAS

Location and Low Gas Temperature suggest postshock gas behind moderate velocity shock driven by disruptive event in center of Orion ~ 500 yr ago

Low-velocity Shocks are Effective at Producing O_2 V > 10 km/s gives the set

V > 10 km/s gives sufficient heating to allow rapid $O + H_2 \rightarrow OH + O$ Followed by $OH + O \rightarrow O_2 + H$ V > 15 km/s produces high enough T to allow back reaction $O_2 + H \rightarrow OH + H$ ~exp (-8750/T) $N(O_2)$ can be as high as 10¹⁷ cm⁻² (from M. Kaufman)

ISSUES:

Need to have atomic oxygen in preshock gas; would lead to O_2 on longer timescale w/o shock Narrow line width and lack of significant velocity shift

Narrow lines at quiescent cloud velocity. Fair agreement with PDR model $(G_0 = 200)$. Geometry and source are not clear. **OT2 data: Larsson poster**

Non-detection: Orion Bar (Melnick et al. 2012)

- Up to 12 hrs integration towards the surface layers of the FUVilluminated Orion Bar
 - the thermal evaporation of O from the grain surfaces is enhanced
- Non-detection at both 487 and 774 GHz
- Upper limit N(O₂) ~4 x 10¹⁵ cm⁻² (face-on)

with ¹³CO 3-2 contours (Lis & Schilke 2003)

Orion Bar O₂ Observations: Test of Current Models of Externally FUV-illuminated Gas

- X(O₂) is predicted to peak at intermediate depth of A_v ~ 8
 - Some gas phase O is provided by FUV photodesorption of water ice
 - Most O_2 formed in gas phase
- Observed upper limit is a factor of a few below model prediction
- The discrepancy between models and observations can be resolved in a number of ways. One promising one is if

The adsorption energy of O on dust grains is greater than 800 K

- Keeps O on grains and thus ready for hydrogenation and in consequence keeps gas-phase abundance of O very low
- Results are lower abundances of O₂ and H₂O in the gas phase

O₂ in NGC1333 IRS4A

(Yildiz et al. 2013)

 O_2 emission velocity agrees with C¹⁸O 1-0 from cold 8 kms⁻¹ cloud

X(O₂) ≅ 10⁻⁸

Binary Class 0 protostar has $v = 7.0 \text{ kms}^{-1}$ $X(O_2) < 6x10^{-9}$

C¹⁸O 3-2 has 8 kms⁻¹ and 6.5 kms⁻¹ components

Cloud collision ?

Conclusions

With limited data available, mostly in lowest frequency transition, most sources show **no** detectable O_2 emission with Herschel HIFI

The broad-brush interpretation is that in regions of modest temperature, the O_2 abundance is extremely low, with limits between few x10⁻⁹ and few x10⁻⁸ if compared to total N(H₂) along line of sight

These results confirm and extend SWAS and Odin results: O_2 is **not** a significant coolant and is **not** a major contributor to overall oxygen budget.

 O_2 in ρ Oph has been confirmed with 2 Herschel lines (+ Odin 118 GHz line) Detection in NGC1333 cloud (not protostar envelope) with X(O_2) ~ 10⁻⁸ Significant detections of three O_2 transitions in Orion: narrow lines with velocity 11 – 12 km/s; most likely due to shock chemistry Complete HOP data set

- confirms that pure gas-phase chemistry is not applicable to dense regions of molecular clouds
- suggests that PDR chemistry, while promising, may need adjustment
- indicates that shock chemistry could be important in some regions

Thanks to all who worked for so long to make Herschel a great success!