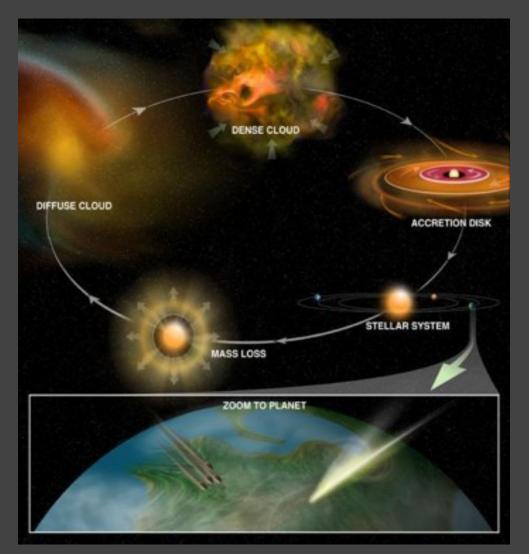
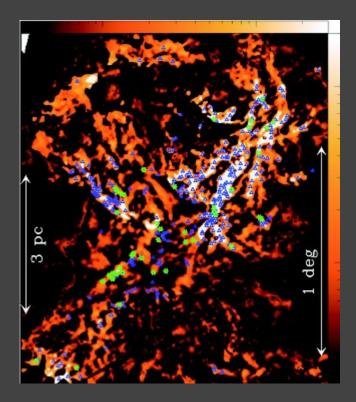
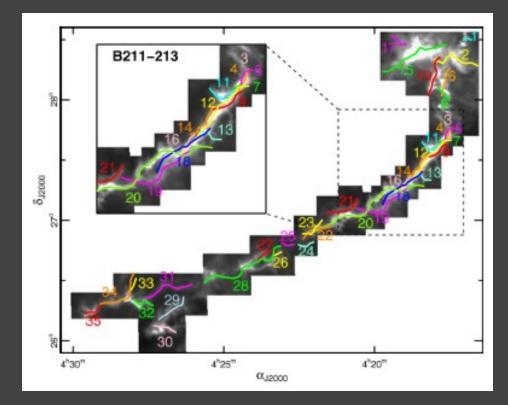

Water in high-mass star-forming regions with Herschel

Floris van der Tak



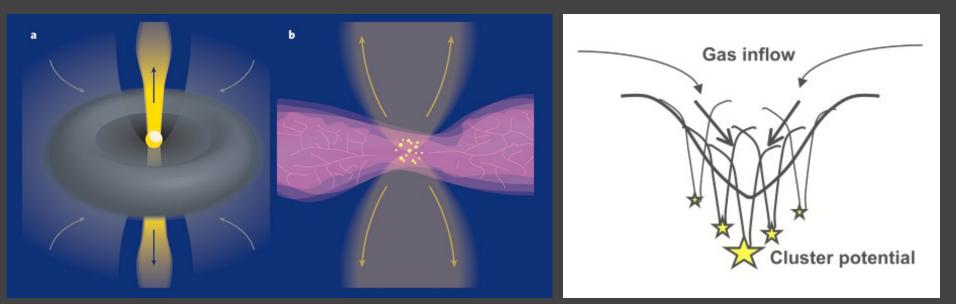

university of groningen


The life cycle of gas in galaxies

- physical conditions star formation rate
- raw material for planetary systems

The cloud scale: PACS and SPIRE imaging

Velocity-coherent filaments form first (turbulence)


- cores condense by gravitational fragmentation Core mass distribution similar to IMF
- decisive phase of low-mass star formation

André et al 2010; Hacar et al 2013

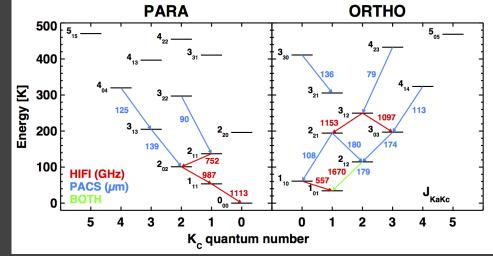
The formation of high-mass stars

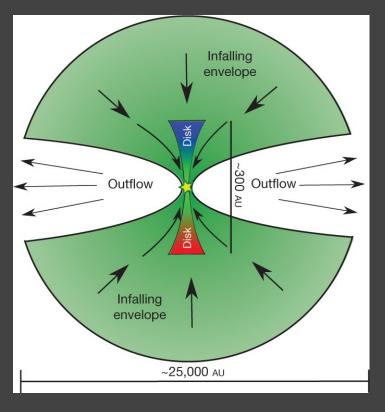
- Must form from large reservoir: $M >> M_1$
 - monolithic collapse: turbulent reservoir
 - competitive accretion: replenish reservoir
 - (coalescence: only at very high mass / density)
- How do we distinguish?
 - M_1 depends on temperature: need a good probe of T

Whitney 2005; Bonnell et al 2007

The importance of water

- A natural chemical filter
 - cold dust: freeze-out
 - warm gas: enhancement
 - probe of energy injection
- A versatile astrophysical tool
 - asymmetric: rich line spectrum
 - large range in radiative lifetimes
 - line ratios probe temperature and density
 - hydride: lines at high frequencies
 - sensitive to dust radiation

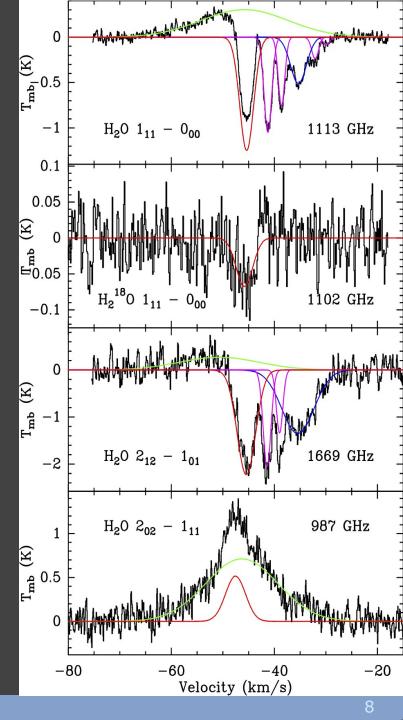



Herschel: A great opportunity...

- Interstellar H₂O: known since 1969
 - masers at 22, 183, 325, ... GHz
 - great tool for kinematics and distances (SgrA*, NGC 4258)
- Thermal H₂O: observe from space
 - ISO / SWAS / Odin: large beam
 - Spitzer: only probe warm H₂O
- HIFI: A revolution
 - multiple lines (including ground states)
 - high spectral resolution
 - good angular resolution
- PACS: Complementary info
 - high-excitation lines
 - spatial distribution

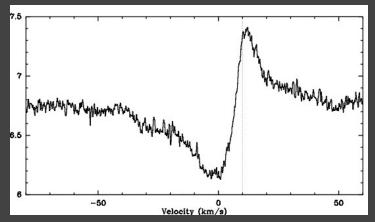
...especially for high-mass protostars

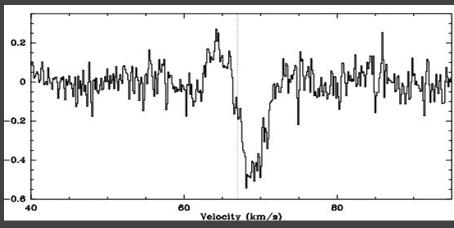
- Survey of 19 objects: $L = 2000 400,000 L_0, d = 1.5 7.9 \text{ kpc}$
 - range of mid-IR brightness
 - signs of active star formation
- H₂O as a physical tracer
 - heating vs cooling
 - radiation vs mechanics
- Origin of H₂O emission & absorption
 - envelope
 - outflow
 - foreground
- trends with physical parameters
 - luminosity
 - mass
 - age



Tobin et al 2012

Line profiles: 4 components


- Continuum (100—3000 Jy)
 - cold, optically thick dust
- Envelope
 - at ground-based V_0 , ΔV
 - emission or absorption
 - signs of infall & expansion
- Outflow
 - broad emission
 - usually blueshifted
 - directed toward us
- Foreground clouds
 - low column: UV dissociation
 - high o/p ratio: warm gas

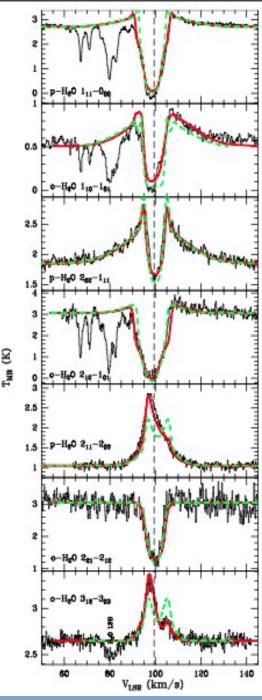


Signs of infall & expansion

- Infall signatures in excited-state line
 - infall only in inner envelope
- Signs of expansion in ground-state lines
 - expansion in outer envelope
- Combination of both seen in SgrB2 envelope
 - Rolffs et al 2010
- High spectral resolution essential!

CRON Expansion profile

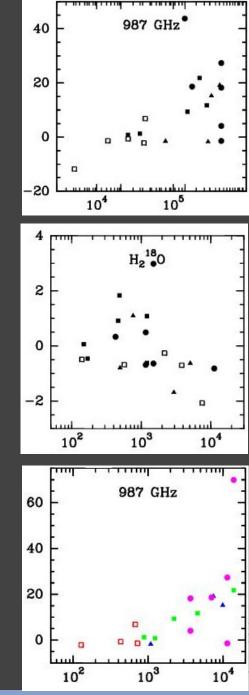
Infall profile


Detailed model for W43MM1

• Detect 14 (isotopic) H₂O lines

- envelope / outflow / foreground
- physical structure from continuum
- radiative transfer modeling of lines
- Kinematics
 - supersonic turbulence
 - fast infall ~1 km/s
 - high accretion \sim few 10⁻³ M₀/yr
- Chemistry
 - outer envelope: freeze-out
 - inner envelope: enhancement

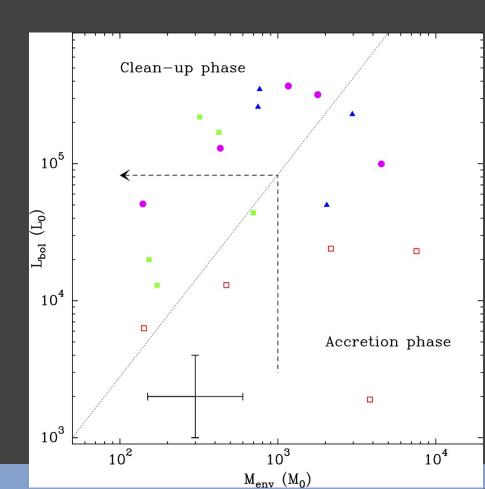
Herpin et al 2012



H₂O trends & thresholds

- F(987 GHz) increases with L
 - emission only
 - threshold (not correlation)

- $H_2^{18}O$ from emission to absorption with M
 - outer layers ~constant abundance


- F(987 GHz) increases with far-IR flux
 - temperature effect

Evolutionary trends

- Molinari et al (2008) model: plot L_{bol} vs M_{env}
 - phase 1 = accretion
 - phase 2 = clean-up
 - similar to low-mass case
- Our sources:
 - weak mid-IR in phase 1
 - most others in phase 2
- Connection with H₂O:
 - absorption = sign of youth

Water in high-mass star formation: summary

- Formation and destruction of H₂O
 - outer envelope: freeze-out
 - inner envelope: evaporation
 - outflow: gas-phase enhancement
 - foreground cloud: photodissociation
- Kinematic tracer
 - infall / outflow / expansion
 - radial variations of turbulence & infall
 - support for monolithic collapse model
- Evolutionary tracer
 - massive pre-stellar cores are rare
 - H₂O profiles show trend from absorption to emission
 - protostars: trends with luminosity & far-IR flux
 - from "accretion" to "clean-up" phase

Conclusions

- Water: a great tracer of high-mass protostellar environment
 - various physical & kinematic components
 - contributes ~10% to cooling (Karska et al 2013)
- Line profiles change from absorption to emission with time
 - but signs of infall & expansion seen at all stages
- Ground state lines: no clear trends with L, M, or age
 - combined emission / absorption: hard to see in galaxies
- Excited state line increases with *L* and far-IR flux
 - traces average source temperature
 - seen out to high z

The future: ALMA!

- Antenna 66 just delivered
 - Bands 3, 6, 7, 9 operating
 - and 4, 5, 8 coming up
- Band 5 great for star formation
 - dust: fragmentation, multiplicity
 - H₂O: kinematics, chemistry

Thanks to:

- Groningen: Yunhee Choi, Woojin Kwon, Russ Shipman
- Bordeaux: Fabrice Herpin, Jonathan Braine, Alain Baudry, Thierry Jacq
- Bonn: Friedrich Wyrowski, Silvia Leurini, Timea Csengeri
- Madrid: Luis Chavarría, Fabien Daniel, Javier Goicoechea
- Leiden / Garching: Irene San José García, Agata Karska

