A Herschel Survey of FIR lines in ULIRGs near and far: Their nature and Evolution

Dimitra Rigopoulou Oxford/RAL

G. Magdis, R. Hopwood, N. Thatte, A. Alonso-Herrero and the HerMES team

Local ULIRGs

- Extremely rare
- Nearly always mergers
- Powered predominantly by star formation
- Half contain a detectable AGN
- Templates for high redshift ULIRGs

The facts:

ISO first hinted that local ULIRGs are [CII] deficient

Malhotra et al, Brauher & Helou, Luhman et al. The Universe explored by Herschel 15-18 Oct 2013, ESTEC

The facts....

Herschel confirms that local ULIRGs are [CII] -deficient

- The HERUS survey (250 hours) $S_{60} > 1.7 \text{ Jy}$
- PACS spectroscopy of fine structure lines: [OII]52,[NIII]57, [OI]63,[NII]122,[OI]145,[CII]158
- SPIRE FTS spectroscopy
- SPIRE photometry of the full far-IR SED
- PI: D. Farrah, co-PIs : H. Spoon, D. Rigopoulou

Farrah et al. 2013

But then came the HERSCHEL lenses but also other evidence from ground-based facilities....

SDP 81

The Universe explored by Herschel 15-18 Nature, ESTEC

The questions:

- Why are local ULIRGs [CII] deficient and high-z luminous infrared galaxies not?
 - When does a change in the ISM properties occur?
 - Poes metallicity play a role?

The HERSCHEL-FTS Survey of intermediate redshift ULIRGs

Target selection: X-match of HerMES 250 micron catalogues with 24 micron priors

Targets have excellent ancillary multi- λ data available

By construction the sample is dominated by ULIRGs

4hours/target (x100 reps) SPIRE-FTS

89 hours of FTS time Program completed

Data Analysis ,session A: P20

Spectral Energy Distributions of intermediate redshift ULIRGs

Magdis et al., in prep

The Universe explored by Herschel 15-18 Oct 2013, ESTEC

Incidentally, our FTS sample probes an interesting phase in galaxy evolution...

Malhotra et al., Stacey et al, Hailey-Dunsheath, Farrah et al. Diaz-Santos et alThe Universe explored by Herschel 15-18 Oct 2013, ESTEC10

What can we say about the properties of the ISM*?

* by ISM I mean PDRs

Gas Conditions in local ULIRGs

Use multiple line ratios as inputs to simple PDR models to constrain gas conditions

PDRToolBox http://dustem.astro.u md.edu/pdrt/

But HII regions in ULIRGs are likely dusty

Gas conditions in local ULIRGs

> <u>UV radiation flux</u> 250 – 6400 ergs cm⁻² s⁻¹ <u>Electron density</u> 10 – 500 cm⁻³

Lower electron density and harsher than lower luminosity starbursts?

Farrah et al. 2013

The properties of the gas...

Malhotra et al., Stacey et al., Ivison et al., Valtchanov et al., George et al.

... so it seems that 0.2<z<0.8 ULIRGs have different ISM properties when compared to local ULIRGs...

A case study : SWIRE5

A signature of `extended' [CII] emission

Take a closer look at the Ha spatially resolved emission

end-to-end velocity: 250 km/sec

Are the intermediate-z ULIRGs colder?

Our conclusions....

Intermediate redshift ULIRGs are not [CII] deficient

Intermediate redshift ULIRGs are not mergers

Rapid evolution in the properties of ISM (PDRs) takes place in the last 5 billion years

With thanks to

The Herschel Instrument Teams The HSC The Project Scientist <u>The SOC of the meeting</u>