

What is a debris disc?

DEBRIS Survey

Disc Emission via a Bias-free Reconnaissance in the Infrared and Submillimetre)

- Primary science goals:
 - To establish what factors affect having a debris disc planets, multiplicity, stellar mass etc
 - To place the solar system in context (common or unusual?)
 - To characterize the nearby debris disc population
 - To resolve discs and model their structure
- Survey design
 - Unbiased survey of 446 nearby stars
 - Flux limited photometric survey
 - All targets observed with PACS 100 and 160 µm
 - Follow-up of interesting sources with PACS at 70 µm, and SPIRE at 250, 350 and 500 µm

DEBRIS Survey: Targets

- Volume limited sample of the closest ~ 90 stars in each spectral type A-M (Phillips et al. 2010)
 - Volume limits: 46, 24, 21, 16 8.6 pc (A-M) with applied 1.2 mJy 100 μm cirrus confusion cut

DEBRIS Survey: Targets

Results

Detections and incidence rates

Spectral type	No. observed		
F	94		
G	88		
К	91		
F, G, K	273		

Stacking

Spectral type	M (3σ u _l	
	100 µm	
F	2.4±1.2 (5.9	
G	0.03±0.3 (0.	
К	-0.5±0.3 (0.	
F, G, K	0.4±0.4 (1.	

Incidence rate %

26±5.2

No. discs

detected

24

0.01 0.10 1.00 10.00 100.00
E=F_{disc}/F_{star}

Time (Myr)

Disc radius vs. fractional luminosity

HD69830

- 6 Gyr
- 3 low mass planets (<0.6 AU)

q¹ Eri

- 7 Gyr
- 1 high mass planet (~2 AU)

61 Vir

- 5 Gyr
- 3 low mass planets (<0.5 AU)

HD 19994

- 4 Gyr
- 1 high mass planets (<0.5 AU)

HD 20794

- 6 Gyr
- 3 low mass planets (<0.35 AU)

Completeness corrected incidence

Spectral Type	No. observed	No. discs detected	Incidence rate %	Incidence rate (adjusted for completeness) %
F	94	24	26±5.2	40±6.6
G	88	11	13±3.8	23±5.1
К	91	10	11±3.5	17±4.3
F, G, K	273	45	16±2.5	25±3.1

Summary

- Debris disc incidence for FGK stars
 - Measured ~16% in-keeping with previous measurements
 - Completeness corrected ~25%
- Stacking: searching for faint debris
 - Kuiper belt still too faint to be observed with Herschel
 - Detected median excess at 100 and 160 µm consistent with zero
- Model fitting
 - Disc population can be fit with a simple steady-state evolution
 - Best fit is achieved when model disc radii are between $\sim\!2\text{--}300$ AU, and have initial disc masses of $\sim\!1.5~M_{earth}$
- Characterisation of disc population
 - Typical disc blackbody radius ~10 AU
 - The Kuiper belt is a typical radius for a debris disc
 - Systems containing both debris and planets exhibit atypical disc properties at ages similar to that of the Solar-system
- Solar-system in context i.e. the bigger picture
 - Not all systems follow the evolutionary path of the KB, either steady-state or post LHB

