

Vera Könyves

Lab. AIM, Paris-Saclay – IAS/Orsay, France

Ph. André, A. Men'shchikov, N. Schneider,S. Bontemps, D. Arzoumanian, N. Peretto,P. Didelon, P. Palmeirim, F. Motte, A. Roy,A. Maury, and the SPIRE SAG3 cons.

Prestellar cores in Aquila observed by the Herschel Gould Belt survey

The Universe Explored by Herschel, ESTEC, Oct., 2013

HERSCHEL Gould Belt survey (HGBS)

Herschel Gould Belt Key Program (André et al. 2010)

- wide-field submm continuum survey with SPIRE/PACS
- 461 hrs of GT
- in nearby star-forming cloud complexes ($d \le 500$ pc) of the Gould Belt
- probes the origin of the stellar masses

Scientific motivations, goals:

- ➡ Link between the prestellar CMF and the stellar IMF ?
- ➡ Provide a complete census of prestellar cores and protostars
- ➡ Unravel the core formation mechanisms

http://gouldbelt-herschel.cea.fr

OBSERVATIONS, DATA REDUCTION

Observations

SPIRE/PACS parallel-mode of Herschel.

♣ Two orthogonal scan maps, 1 repetition, taken with 60"sec⁻¹ scanning speed.

Data reduction

SPIRE 250/350/500 µm (N. Schneider):

HIPE v.10 SPIRE Destriper pipeline for data processing and map making.

PACS 70/160 µm (V. Könyves):

◆ HIPE v.10 for data processing; Scanamorphos (Roussel, 2013) for map-making.

SPIRE/PACS map-making benchmark

- ▲ Joint efforts of SPIRE/PACS ICCs, map-makers, Herschel Key Program repres.
- Map-making tests and benchmarks including: photProject, madMap, SPIRE pipeline (Naive, Destriper), Scanamorphos, JScanamorphos, Sanepic, Tamasis, Unimap, +high-res. methods (HiRes, Supreme).
- ▲ Results of this benchmark will become public soon.

DERIVING T_d, N_{H2} MAPS

Dust temperature (T_{d}) and column density (N_{H2}) maps

- Using smoothed (36.9") maps of 160-250-350-500 μm; Planck offsets added (Bernard et al. 2010).
- Pixel-by-pixel SED fitting with a greybody: $I_v = B_v(T_d)\kappa_v \Sigma$
 - Assumption: single-temperature dust optically thin emission
 - Dust emissivity index β = 2 (cf. Hildebrand, 1983)
- Weighting by calibration uncertainties (20%-160 μm, 15%-SPIRE bands)
- $\Rightarrow N_{H2} = \Sigma / \mu_{H2} m_{H}$

Deriving high-resolution (18.2") column density maps (see Palmeirim et al. 2013):

- Using the concept of multi-scale decomposition (Starck et al. 2004)
- Small scales are successively added up from 250 to 500 µm while conserving spectral informations from longer wavelengths.

HGBS

SOURCE DETECTION

Source extraction with getsources

Getsources: multi-scale, multi-wavelength source finding algorithm (Men'shchikov et al. 2012).

> The method analyzes fine spatial decompositions of original images

Source extraction in two steps:

- Detection phase:
 - Cores: 160, 250, 350, 500 µm maps, high-resolution column density image.
 - Protostars/YSOs: 70 mu image.
- Measurement phase:
 - Cores: orig., bg-subtr. 70, 160, 250, 350, 500 µm maps, and the high-res. column density image
 - Protostars/YSOs: same as for cores.

SOURCE IDENTIFICATION, PHYSICAL PROPERTIES

Source selection/classification

- ▲ Using both the core & protostellar extraction results we distinguish candidates of:
 - dense cores
 - YSOs/protostars
 - starless cores
 - embedded protostars
- We set combinations of selection criteria based on:
 - Significance
 S/N ratio
 peak/total flux
 source size/elongation
 - Eg.: YSOs: detected in emission above 5σ level at 70 μ m
 - Starless cores: undetected in emission (or detected in absorption) at 70 μm.
- Similar SED fitting procedure (as for the T_d, N_{H2} maps) was employed to estimate the core properties from integrated flux densities by getsources (d=260 pc).
 - \Rightarrow Estimated mass uncertainty is a factor of ~2, mainly due to κ_{v} .

HGBS

CORE PHYSICAL PROPERTIES – MASS ACCURACY

Improving the accuracy of mass estimates (1)

Dust opacity changes with (column) density!

In Orion A-C optical depth, τ , (from Herschel data) is well correlated with $N_{\rm H}$ (from 2MASS color excess). Roy et al. (2013) found: $\kappa_{\lambda} \propto N_{\rm H2}^{0.28}$

Herschel Symposium, ESTEC, Oct., 2013

HGBS

CORE PHYSICAL PROPERTIES – MASS ACCURACY

Improving the accuracy of mass estimates (2)

Herschel Symposium, ESTEC, Oct., 2013

HGBS: THE AQUILA CLOUD COMPLEX

RGB COMPOSITE

R-250 μm G-160 μm B- 70 μm

W40 HII region

Serpens south

MWC297/Sh62 HII region

André et al. 2010 Könyves et al. 2010 Bontemps et al. 2010 Men'shchikov et al. 2010 Maury et al. 2011

SOURCES IN THE AQUILA MAIN PART

Aquila -entire- field (~10 deg²):

- ~ 600 starless cores ()
- ~ 400 prestellar cores (70 %)
- ~ 200 protostars (**O**)

Background: high-res. column density map (Planck offsets added)

André et al. 2010 Könyves et al. 2010 Bontemps et al. 2010 Maury et al. 2011

CLOSE UP VIEW OF EXTRACTED SOURCES

Part of the HGBS source extraction procedure: running an other source finder code (than *getsources*) ⇒ generate robustness flag

For Aquila cores we ran **CSAR** (Cardiff Sourcefinding AlgoRithm, Kirk et al. 2013), on the column density map.

A core:

- local column density peak
- simple (convex) shape
- no substructure at Herschel resol.
- potential single star-forming entity

Column density image zoom of starless cores and protostars.

Black - Getsourcses starless cores Red - Getsources protostars Green - CSAR sources

11

THE CORE CATALOG

http://gouldbelt-herschel.cea.fr/archives

OSHI Herschel images

Gould Belt Key Programme

Legacy of the Herschel **Gould Belt survey**

Products:

- Level-2.5 maps at 70/160/250/350/500 μm
- Catalogues of observed/derived properties of cores and protostars.

Herschel Gould Belt Survey SPIRE/PACS core catalog of the AQUILA region

name	α	δ	sig ₀₇₀	fxp ₀₇₀	fxperr ₀₇₀	ctr ₀₇₀	fxt ₀₇₀	fxterr ₀₇₀	afwhm ₀₇₀	bfwhm ₀₇₀	ра ₀₇₀	sig ₁₆₀	fxp ₁₆₀	fxperr ₁₆₀	
	deg	deg		Jy/beam	Jy/beam		Jy	Jy	arcsec	arcsec	deg		Jy/beam	Jy/beam	
aql1	277.51726	-2.05163	1.623E+03	1.789E+01	1.898E-01	1	6.608E+01	2.751E-01	16.2	9.9	27.6	3.748E+03	1.491E+02	2.853E+00	~
aql2	277.03841	-3.80277	3.577E+02	5.762E+00	2.238E-02	1	1.096E+01	3.898E-02	12.0	10.5	18.5	1.279E+03	4.191E+01	2.038E-01	
aql3	277.51017	-2.04661	2.287E+01	1.850E+00	1.988E-01	1	7.382E+00	2.709E-01	19.3	9.5	119.2	6.733E+02	4.907E+01	3.838E+00	
aql4	277.28475	-1.51301	5.085E+02	6.750E+00	2.358E-02	1	1.031E+01	4.328E-02	11.4	11.2	40.2	9.598E+02	3.402E+01	1.237E-01	~
aq15	277.28051	-3.72333	4.209E+01	7.086E-01	1.763E-02	1	8.727E-01	2.998E-02	11.1	9.3	135.7	2.694E+02	9.047E+00	8.300E-02	
aql6	277.50627	-2.17374	2.278E+03	3.676E+01	2.035E-02	1	5.741E+01	3.658E-02	11.6	10.9	71.0	1.398E+03	5.160E+01	2.852E-01	
aql7	277.26508	-1.65083	3.528E+01	4.343E-01	1.746E-02	1	1.315E+00	2.554E-02	15.4	9.6	93.1	2.849E+02	9.169E+00	8.577E-02	
		•					•	•		•					

Herschel Symposium, ESTEC, Oct., 2013

MASS-SIZE DIAGRAM

Herschel Symposium, ESTEC, Oct., 2013

CORE MASS FUNCTION (CMF)

Differential mass function of ~400 prestellar cores in the entire Aquila field.

HGBS: (ORION-A/L1641)

CORE MASS FUNCTION (CMF)

In Orion-A / L1641 Polychroni et al. (2013) found that prestellar cores sitting ON filaments seem to be more massive than the OFF-filament ones.

CORE MASS FUNCTION (CMF)

In Aquila, the prestellar cores with ON-filament positions do not show strong evidence of being more massive.

⇒ This feature can be environment dependent...

Herschel Symposium, ESTEC, Oct., 2013

Background image

COMPLETENESS LIMIT

Source completeness is background dependent!

Number of objects per mass bit: AV/Aloge Number of objects per mass bit: AV/Aloge System IMF Chabrier (2005) 0.01 0.1 1 10 100 Mass, M (M_☉)

Synthetic sky image

 ✓ Conservative completeness limit of prestelar cores: ~0.3 M_☉

Könyves et al. 2010, Könyves et al., in prep.

LIFETIME ESTIMATES

Core lifetime estimates

Based on number ratios:

- ▲ ~400 Herschel prestellar cores (t ~ 1 Myr)
- ~200 Herschel Class0/ClassI protostars (t ~ 0.5 Myr)
- ▲ ~800 Spitzer (Class II, YSOs) (t ~ 2 Myr, Evans et al. 2009)

Könyves et al., in prep.

Jessop & Ward-Thompson 2000, André et al., chapter in PPVI.

Estimates of Aquila core lifetimes lie between two "extreme" timescale evolutionary models.

Literature estimates for observed core timescales of various data-sets gave similar constraints (Jessop & Ward-Thompson 2000, Ward-Thompson et al. 2007, references therein).

Herschel Symposium, ESTEC, Oct., 2013

CORE/STAR FORMATION THRESHOLD?

Strong evidence of a column density "threshold" for the formation of prestellar cores in Aquila

In Aquila, ~ 90% of the Herschel prestellar cores are found above $A_v \sim 8 \Leftrightarrow \Sigma \sim 150 \text{ M}_{\odot} \text{ pc}^{-2}$

Herschel Symposium, ESTEC, Oct., 2013

Thank You!

