Herschel Spatially Resolved Studies Of Extremely Metal Poor Galaxies

Yong Shi (Nanjing University, China) Collaborators: George Helou (Caltech), Lee Armus (Caltech), Sabrina Stierwalt (UofVirgnia)

1. Introduction

Extremely Metal Poor Galaxies (XMPGs, Z<Z_o/10):

Testing current understandings of roles of metallicity in ISM physics and star formation at extreme low Z ($< Z_{\odot}/10$).

A local laboratory to gain insights into galaxy formation in early Universe.

Spatially-resolved studies of nearby XMPGs by Herschel enable to probe the dependence of ISM physics and SF processes on <u>local</u> physical conditions.

2. Sample And Observations

Sample:

Table 1. The Proposed Sample											
name	D	12 + alog 10(O/H)	Type D ₂₅		$\Sigma_{70\mu m}$	$\Sigma_{160\mu m}$					
	[Mpc]			[']	[MJy/sr]	[MJy/sr]					
DDO 68	5.90	7.21	BCD	2.6	1.5	2.0					
Sextans A	1.40	7.49	dI	5.0	2.5	3.0					
ESO 146-G14	22.50	7.61	LSB	3.2	2.6	3.5					

Solar 12+log(O/H)=8.65(Pettini & Pagel 2004)

Observations (PI: Y. Shi): PACS (70 and 160 um) + SPIRE (250, 350, 500 um)

Reduction: Unimap (Traficante+2011, Piazzo+2012)

3. RESULT: Spatial Distribution

Dust emission is enhanced (detected) in SF clumps with high Σ^{UV}_{SFR} , similar to the case in spiral galaxies.

Blue: HI gas, Green: Far-UV, RED: 70+160 um

A Single MBB Fit To ≥ 70 um of Sextans A:

A Single MBB Fit To \geq 70 um of ESO 146-G14:

λ[µm]

The Universe Explored By Herschel

All dusty clumps prefer high temperature and low emissivity, as compared to spiral galaxies!

Possible warm dust contaminations at 70 um (Galametz+2012) -- reducing 70 um emission by 30 % and re-fit. The basic trend holds.

The Universe Explored By Herschel

Comparisons of x² between fixing emissivity (a standard value of 2) and setting it as free.

	Sextans A					ESO 146-G14			
	REG- 0	REG- 1	REG- 2	REG-3	REG-4	REG-0	REG-1	REG-2	REG-3
X ² /dof free ß	1.5	1.1	2.5	0.3	0.1	3.2	0.1	0.0	0.6
X ² /dof B=2	29	17	13	30	0.1	13	4.5	1.7	13

The Universe Explored By Herschel

3. RESULT: DL07 Model Fit

Fit To Spitzer+Herschel Photometry of Sextans A:

λ[µm]

3. RESULT: DL07 Model Fit

Fit To Spitzer+Herschel Photometry of ESO146-G14:

λ[µm]

3. RESULT: DL07 Model Fit

Fit To Spitzer+Herschel Photometry of DDO 68:

The Universe Explored By Herschel

3. RESULT: DGR Of SF Disks

With spatially resolved images, we can derive the integrated DGR of star-forming disks (c.f. Draine+2007).

Assuming HI dominates the total cold gas over the SF disks (likely reasonable for this low Z, e.g. Elmegreen +2013), the dust-to-gas ratio roughly follows 1/Z.

The Universe Explored By Herschel

Making an assumption that the DGR is constant across the disk given following three reasons:

- Dust temperature and emissivity are similar for different regions, implying similar ISM conditions in different regions.
- Studies of ~ 30 spiral disks show pretty flat DGR profiles, after removing the effect of metallicity gradient (Sandtrom +2012).
- [O/H] of several HII regions in Sextans A are quite constant (Kniazev+05), as well as in DDO 68 (Pustilnik+05).

With the above assumption, we estimate the total cold gas of SF clumps with the integrated DGR and derived dust masses of SF clumps.

Sextans A [0.1 kpc-scale]:

SF efficiency is lower by > 10, consistent with KMT+ model (Krumholz+2013) and OML10h model (Ostriker +2010; Bollatto+12).

 Error on SFR:
 UV photon noise
 systematic uncertainty (0.2 dex)

Error on gas:

- The integrated DGR error.
- The fluctuations of DGR across the disk based on spirals.
- ♦ The derived dust mass error.

ESO146-G14[1 kpc-scale]:

SF efficiency is lower by > 10, consistent with KMT+ model and OML10h model.

The Universe Explored By Herschel

DDO 68 [0.2 kpc-scale]:

SF efficiency is lower by 7, higher than predictions with KMT+ model and OML10h model.

Two Possible Reasons:
(1) Under-estimate of dust masses due to the lack of photometry > 160 um.
(2) Galaxy interactions may enhance SFE, similar to the case of massive galaxies (e.g. Daddi+2010).

4. Symmary

We present Herschel spatially-resolved multi-band studies of three XMPGs. Preliminary results are:

> Dust is enhanced (detected) in SF clumps at < $Z_{\odot}/10$, similar to the higher-Z case.

The cold dust components of SF clumps of XMPGs have different FIR shapes compared to higher-Z.

 \succ The integrated DGRs of SF disks of XMPGs roughly follow 1/Z.

The SFEs of SF clumps of XMPGs are significantly lower (by > 10) compared to spiral galaxies at similar gas densities, demonstrating the predictions by theoretical models.