Herschel/SPIRE Spectra of Seyfert Galaxies

Miguel Pereira Santaella

L. Spinoglio, G. Busquet, C. Wilson, J. Glenn, K. Isaak, J. Kamenetzky, N. Rangwala, M. Schirm, M. Baes, M. Barlow, A. Boselli, A. Cooray, D. Cormier

Pereira-Santaella et al. 2013, ApJ 768 55 + arXiv:1301.3365

ESTEC, October 2013

Outline

- Introduction
 - SPIRE/FTS and Sub-mm Spectra
- HF Absorption and Emission
- Mid-J CO Emission
 - LVG Models
 - PDR and XDR models
 - AGN vs Starburst
- Summary

Introduction

SPIRE-FTS

• Fourier Transform Spectrometer (FTS) on-board Herschel

Spectral resolution 1.5 GHz $R \sim 300-1000$

SPIRE-FTS

SPIRE-FTS sub-mm Spectrum

Ten mid-J CO ladder from J = 4-3 to J = 13-12 Two [CI] lines at 492 and 809 GHz A few H_2O and H_2O^+ transitions CH⁺ and OH⁺ transitions HF J = 1-0 [NII] 1461 GHz (205 micron) Ionized gas.

HF 1-0 1232 GHz

Hydrogen Fluoride

- F abundance is low $\sim 10^{-8}$
- F forms HF rapidly when H₂ becomes abundant

 $F + H_2 \rightarrow HF + H$ exothermic

• HF more abundant than CO for $A_{u} < 1$ mag

HF 1-0 at 1232 GHz

Herschel detections of HF

HF in Sy Galaxies

- 2 detections in our sample
 - UGC05101. LINER. Absorption
 - NGC7130. Sy2. Emission

HF 1-0 Absorption

• UGC05101

 $N_{\rm HF} \sim 1.1 \text{ x } 10^{14} \text{ cm}^{-2}$ For a source size of 10" \longrightarrow HF abundance ~ 2.6 x 10⁻⁸

Solar F abundance is 3.5 x 10⁻⁸ (Lodders 2003)

HF 1-0 Absorption

• UGC05101

 $N_{\rm HF} \sim 1.1 \text{ x } 10^{14} \text{ cm}^{-2}$ For a source size of 10" \longrightarrow HF abundance ~ 2.6 x 10⁻⁸

- Solar F abundance is 3.5 x 10⁻⁸ (Lodders 2003)
- $N_{_{HF}}$ is a lower limit
 - Only HF in J = 0
 - Only clouds illuminated by the sub-mm continuum source
 - All the continuum measured is actually illuminating these clouds
- $N_{_{H2}}$ is a depends on the CO-to-H2 conversion factor and on the source size

Assuming optically thin emission

 $N_{J=1} \sim 10^{11} \, cm^{-2}$

Again this is a lower limit!

For solar abundance and excitation due to collisions with H2 >> 20% of the total molecular gas $n_{H2} > 10^{10} \text{ cm}^{-3}$

Assuming optically thin emission

 $N_{J=1} \sim 10^{11} \, cm^{-2}$

Again this is a lower limit!

- IR Pumping. HF has a vibrational absorption band at 2.5 µm
 To be efficient radiation field T > 730 K → 10⁶ times PDR of O star
 Only the AGN could produce such radiation field
- Chemical Pumping

Collisions with electrons

- IR Pumping. HF has a vibrational absorption band at 2.5 µm
 To be efficient radiation field T > 730 K ---- 10⁶ times PDR of O star
 Only the AGN could produce such radiation field
- Chemical Pumping. HF formed in a excited state HF dissociated by intense UV radiation and reformed rapidly $\chi > 10^7$ and high density $n_{_{H2}} > 10^7$ cm⁻³ Possible close to the AGN
- Collisions with electrons

- IR Pumping. HF has a vibrational absorption band at 2.5 µm
 To be efficient radiation field T > 730 K → 10⁶ times PDR of O star
 Only the AGN could produce such radiation field
- Chemical Pumping. HF formed in a excited state HF dissociated by intense UV radiation and reformed rapidly $\chi > 10^7$ and high density $n_{_{H2}} > 10^7$ cm⁻³ Possible close to the AGN
- Collisions with electrons. From ionized C ($n_e \sim 10^4 \text{ cm}^{-3} \text{ or } n_{H2} \sim 10^8 \text{ cm}^{-3}$) $N_{H2} > 10^{20} \text{ cm}^{-2} \text{ of high density molecular gas (H2) with ionized C}$ XDR around the AGN?

- IR Pumping. HF has a vibrational absorption band at 2.5 µm
 To be efficient radiation field T > 730 K → 10⁶ times PDR of O star
 Only the AGN could produce such radiation field
- Chemical Pumping. HF formed in a excited state HF dissociated by intense UV radiation and reformed rapidly $\chi > 10^7$ and high density $n_{_{H2}} > 10^7$ cm⁻³ Possible close to the AGN
- Collisions with electrons. From ionized C ($n_e \sim 10^4 \text{ cm}^{-3} \text{ or } n_{H2} \sim 10^8 \text{ cm}^{-3}$) $N_{H2} > 10^{20} \text{ cm}^{-2}$ of high density molecular gas (H2) with ionized C XDR around the AGN?

Mid-J CO Emission

CO Emission

- CO is mainly excited by collisions with H_2
- We use RADEX: non-LTE code to predict the CO line intensities: Kinetic temperature, density and column density

- The observed CO SLEDs agree with kinetic temperatures \sim 300-800 K and densities \sim 10³-10⁴ cm⁻³
- Warm molecular mass 10⁶-10⁸ Msun

Cold Molecular Gas

Excess CO J=1-0 with respect to the model prediction (10-25%)

 Cold molecular gas produces lower-J CO lines (lower excitation temperature)

CO J = 1-0 flux α H₂ mass

CO-to-H₂ conversion factor

$$N(H_2) = 0.5 \times 10^{20} I (CO J = 1-0)$$

Downes & Solomon 2008

Cold molecular mass 10^{7.5}-10^{9.6} Msun

Cold and Warm Molecular Gas

- CO SLED. 2 components
 - Luminosity dominated by the warm component (mid-J CO lines)
 - Mass dominated by the cold component (low-J CO lines)

	Cold	Warm
Luminos	ity 10%	90%
Mass	95%	5%

PDR or XDR?

 PDR fits CO J<9. Underpredicts CO J>= 9

- PDR fits CO J<9. Underpredicts CO J>= 9
- XDR models, in general, fit better higher-J CO lines
 - XDR A High density
 - XDR B Intermediate density Models: L(CO)/L(X) ~ 10⁻⁴.
 Obs: L(CO)/L(X) ~ 10⁻².
 - XDR C Diffuse gas. Low surface brightness (> 100x lower than observed)

Comparing CO SLEDs

- Mrk 231. Sy1 LIRG. XDR (van der Werf+2010)
- NGC6240. Sy2 LIRG. Shocks (Meijerink+2013)
- Arp220. ULIRG. No PDR, no XDR, shocks? (Rangwala+2011)
- M82. Starburst PDR+shocks (Kamenetzky+2012)

AGN or Star-Formation?

Likely Star-formation in these galaxies

- SPIRE/FTS view of warm molecular gas in galaxies
 - HF 1-0 as an AGN tracer
 - PDR? XDR? Shocks? We need more data (higher angular resolution, higher-J CO lines)
 - mid-J CO emission more likely related to SF in these galaxies