Herschel/SPIRE Spectra of Seyfert Galaxies

Miguel Pereira Santaella
L. Spinoglio, G. Busquet, C. Wilson, J. Glenn, K. Isaak, J. Kamenetzky, N. Rangwala, M. Schirm, M. Baes, M. Barlow, A. Boselli, A. Cooray, D. Cormier

ESTEC, October 2013
Outline

- Introduction
 - SPIRE/FTS and Sub-mm Spectra
- HF Absorption and Emission
- Mid-J CO Emission
 - LVG Models
 - PDR and XDR models
 - AGN vs Starburst
- Summary
Introduction
SPIRE-FTS

- Fourier Transform Spectrometer (FTS) on-board Herschel

- **SSW**
 - 925-1500 GHz
 - 195-325 μm
 - ~18 arcsec beam

- **SLW**
 - 450-950 GHz
 - 320-670 μm
 - ~30 arcsec beam

Spectral resolution 1.5 GHz R ~ 300-1000
SPIRE-FTS

FTS footprint over SPIRE 250μm image

Spectrum central bolometer

Pereira-Santaella+2013
SPIRE-FTS sub-mm Spectrum

Ten mid-J CO ladder from $J = 4$-3 to $J = 13$-12
Two [CI] lines at 492 and 809 GHz
A few H_2O and H_2O^+ transitions
CH^+ and OH^+ transitions
$\text{HF} J = 1$-0
[NII] 1461 GHz (205 micron)

Molecular gas.

Ionized gas.
HF 1-0 1232 GHz
Hydrogen Fluoride

- F abundance is low $\sim 10^{-8}$

- F forms HF rapidly when H_2 becomes abundant

$$F + H_2 \rightarrow HF + H \text{ exothermic}$$

- HF more abundant than CO for $A_v < 1$ mag

PDR model Neufeld+2005
HF 1-0 at 1232 GHz

Expected in absorption

E$_{J=1}$ = 59 K & high critical density n$_{H_2}$ ~ 1010 cm$^{-3}$ (at 50 K)

A$_{10}$ = 2.4 x 10$^{-2}$ s$^{-1}$

τ = 41 s

For comparison for CO 1-0

τ = 160 days and E$_i$ = 6 K

ESTEC, October 2013. Miguel Pereira Santaella IAPS-INAF
Herschel detections of HF

Mrk 231 - Sy1
Spinoglio+2012

Arp220 - Starburst
Rangwala+2011

NGC1068 - Sy2
Spinoglio+2012

M82 - Starburst
Kamenetzky+2012
HF in Sy Galaxies

- 2 detections in our sample
 - UGC05101. LINER. Absorption
 - NGC7130. Sy2. Emission
HF 1-0 Absorption

- UGC05101

\[N_{HF} \sim 1.1 \times 10^{14} \text{ cm}^{-2} \]

For a source size of 10'' \[\rightarrow \text{HF abundance} \sim 2.6 \times 10^{-8} \]

- Solar F abundance is \[3.5 \times 10^{-8} \text{ (Lodders 2003)} \]
HF 1-0 Absorption

- UGC05101

\[N_{HF} \sim 1.1 \times 10^{14} \text{ cm}^{-2} \]

For a source size of 10'' \[\Rightarrow \text{HF abundance} \sim 2.6 \times 10^{-8} \]

- Solar F abundance is \(3.5 \times 10^{-8} \) (Lodders 2003)

\[N_{HF} \] is a lower limit
 - Only HF in J = 0
 - Only clouds illuminated by the sub-mm continuum source
 - All the continuum measured is actually illuminating these clouds

\[N_{H2} \] is a depends on the CO-to-H2 conversion factor and on the source size
HF 1-0 Emission in NGC7130

- Assuming optically thin emission \(N_{J=1} \sim 10^{11} \text{ cm}^{-2} \)

For solar abundance and excitation due to collisions with H2

\[\downarrow \]

\[\gg 20\% \text{ of the total molecular gas } n_{\text{H}_2} > 10^{10} \text{ cm}^{-3} \]

Again this is a lower limit!
Assuming optically thin emission \(N_{J=1} \sim 10^{11} \text{ cm}^{-2} \)

For solar abundance and excitation due to collisions with H2

\[\gg 20\% \text{ of the total molecular gas } n_{H_2} > 10^{10} \text{ cm}^{-3} \]

Again this is a lower limit!
HF 1-0 Emission in NGC7130

- IR Pumping. HF has a vibrational absorption band at 2.5 μm
 To be efficient radiation field $T > 730\, K \rightarrow 10^6$ times PDR of O star
 Only the AGN could produce such radiation field

- Chemical Pumping

- Collisions with electrons
HF 1-0 Emission in NGC7130

- **IR Pumping.** HF has a vibrational absorption band at 2.5 μm. To be efficient radiation field $T > 730$ K $
ightarrow 10^6$ times PDR of O star. Only the AGN could produce such radiation field.

- **Chemical Pumping.** HF formed in a excited state. HF dissociated by intense UV radiation and reformed rapidly. $\chi > 10^7$ and high density $n_{H_2} > 10^7$ cm$^{-3}$ Possible close to the AGN.

- **Collisions with electrons**
HF 1-0 Emission in NGC7130

- **IR Pumping.** HF has a vibrational absorption band at 2.5 μm. To be efficient radiation field $T > 730$ K → 10^6 times PDR of O star. Only the AGN could produce such radiation field.

- **Chemical Pumping.** HF formed in a excited state. HF dissociated by intense UV radiation and reformed rapidly. $\chi > 10^7$ and high density $n_{H_2} > 10^7$ cm$^{-3}$ Possible close to the AGN.

- **Collisions with electrons.** From ionized C ($n_e \sim 10^4$ cm$^{-3}$ or $n_{H_2} \sim 10^8$ cm$^{-3}$) $N_{H_2} > 10^{20}$ cm$^{-2}$ of high density molecular gas (H2) with ionized C. XDR around the AGN?
HF 1-0 Emission in NGC7130

- **IR Pumping.** HF has a vibrational absorption band at 2.5 μm
 To be efficient radiation field $T > 730$ K $\rightarrow 10^6$ times PDR of O star

Only the **AGN** could produce such radiation field

- **Chemical Pumping.** HF formed in a excited state
 HF dissociated by intense UV radiation and reformed rapidly
 $\chi > 10^7$ and high density $n_{H_2} > 10^7$ cm$^{-3}$ Possible close to the **AGN**

- **Collisions with electrons.** From ionized C ($n_e \sim 10^4$ cm$^{-3}$ or $n_{H_2} \sim 10^8$ cm$^{-3}$)
 $N_{H_2} > 10^{20}$ cm$^{-2}$ of high density molecular gas (H2) with ionized C
 XDR around the **AGN**?
Mid-J CO Emission
CO Emission

- CO is mainly excited by collisions with \(\text{H}_2 \)

- We use RADEX: non-LTE code to predict the CO line intensities: Kinetic temperature, density and column density

- The observed CO SLEDs agree with kinetic temperatures \(~300-800\, \text{K}\) and densities \(~10^3-10^4\, \text{cm}^{-3}\)

- Warm molecular mass \(10^6-10^8\, \text{M}_{\odot}\)
Cold Molecular Gas

- Excess CO J=1-0 with respect to the model prediction (10-25%)

- Cold molecular gas produces lower-J CO lines (lower excitation temperature)

\[
\text{CO J} = 1-0 \text{ flux } \propto \text{H}_2 \text{ mass}
\]

\[
\text{CO-to-H}_2 \text{ conversion factor }
\]

\[
N(\text{H}_2) = 0.5 \times 10^{20} \ I(\text{CO J} = 1-0)
\]

\[\text{Downes & Solomon 2008}\]

Cold molecular mass \(10^{7.5} - 10^{9.6} \text{ Msun}\)
Cold and Warm Molecular Gas

- CO SLED. 2 components
 - Luminosity dominated by the warm component (mid-J CO lines)
 - Mass dominated by the cold component (low-J CO lines)

<table>
<thead>
<tr>
<th></th>
<th>Cold</th>
<th>Warm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>10%</td>
<td>90%</td>
</tr>
<tr>
<td>Mass</td>
<td>95%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Warm gas
PDR or XDR?
PDR and XDR Models

- **PDR** fits CO $J<9$. Underpredicts CO $J\geq 9$

Pereira-Santaella+2013b
- PDR fits CO $J<9$. Underpredicts CO $J \geq 9$
PDR and XDR Models

- **PDR** fits CO J<9. Underpredicts CO J>= 9
PDR and XDR Models

- **PDR** fits CO J<9. Underpredicts CO J>= 9
- **XDR models**, in general, fit better higher-J CO lines
 - **XDR A** High density
 - **XDR B** Intermediate density

 Models: L(CO)/L(X) \sim 10^{-4}

 Obs: L(CO)/L(X) \sim 10^{-2}

- **XDR C** Diffuse gas. Low surface brightness (> 100x lower than observed)
Comparing CO SLEDs

- Mrk 231. Sy1 LIRG. **XDR** (van der Werf+2010)

- NGC6240. Sy2 LIRG. **Shocks** (Meijerink+2013)

- Arp220. ULIRG. No **PDR**, no **XDR**, **shocks**? (Rangwala+2011)

- M82. Starburst **PDR+shocks** (Kamenetzky+2012)
AGN or Star-Formation?

Likely Star-formation in these galaxies

\[\frac{L_{\text{CO}}}{L_{\text{IR}}} \approx 10^{-4} \]

\[L_{\text{CO}} \sim 10^{-4} L_{\text{IR}} \]

\[L_{\text{CO}} \sim 10^{-4} L_{\text{IR}} \]

Pereira-Santaella+2013

AGN luminosity

SFR

L~2 dex

L_{\text{[OIV]}} \sim L_{\text{sun}} \]

L_{\text{IR}} \sim L_{\text{sun}} \]

L_{\text{CO}} \sim L_{\text{IR}} \]

Pereira-Santaella+2013
Summary

- SPIRE/FTS view of warm molecular gas in galaxies
 - HF 1-0 as an AGN tracer
 - PDR? XDR? Shocks? We need more data (higher angular resolution, higher-J CO lines)
 - mid-J CO emission more likely related to SF in these galaxies