Herschel Exploitation of Local Galaxy Andromeda HELGA: Dust and star formation in M31

George Ford Cardiff University

for SPIRE SAG2 and the Belgian PACS team including HELGA PI Jacopo Fritz (Universiteit Gent) (+ Karl Gordon et al; Robert Braun et al)

Why choose Andromeda?

- It is large and close by, allowing us to resolve small scale features.
- Similar to the Milky Way.

A panchromatic view

We can now study all components of M31 at high resolution:

log₁₀(K km s⁻¹)

- Young and old stars, etc.
- Molecular and atomic gas
- Dust

log₁₀(M_{sol} kpc⁻²)

5 kpc

Observations (HELGA I; Fritz et al 2012)

- 18.2 hours
- 4 Scans
- 2.5x5.5 degrees
- Observed over Xmas & New year 2010/11

Cirrus Subtraction (HELGA I; Fritz et al 2012)

- Use HI data cubes that include Galactic velocities
- Unfortunately M31 rotation velocity ~ systemic velocity
- Yellow areas definitely milky way
- Faint ring in green circle definitely M31
- Pink & black ambiguous
 Purple = NGC205

As seen on TV

HELGA IV: (Kirk, J. M. et al 2013)

- Three colour image indicates warmer dust in the centre
- Deprojected galaxy shows evidence of a 'disturbed past.'

SED fits (HELGA II; Smith, M. W. L. et al 2012)

SED fits (HELGA II; Smith, M. W. L. et al 2012)

- Radial variation in gasto-dust ratio matches that predicted from the metallicity gradient
- Heating in bulge dominated by old stars
- Dust emissivity index varies, suggests changing dust composition / size varies with radius.

HELGA III: The star formation 'law'; Ford, G. P. et al 2013 Kennicutt, 1998 (Whole galaxies)

 $\frac{\Sigma_{SFR}}{N} = A \Sigma_{gas}^{N}$ $\frac{N}{N} = 1.4$

SFR ~ M/τ_{ff} ~ $\rho/\rho^{-1/2}$ ~ $\rho^{3/2}$

SFR tracers

SFR tracers

Star formation map

Star formation map

Interstellar medium

Interstellar medium: Dust

- We can also attempt to trace the total gas mass by looking at the distribution of dust (Eales, S. A. et al. 2012).
- Dust mass taken from Smith, M. W. L. et al. (2012)

Resolved SF Law

- Total gas gives N~2, may be affected by saturation or HI turning molecular, but not being observed in CO.
- SF laws with molecular hydrogen and gas from dust give a consistently low index (N ~ 0.6)

Summary

HELGA not just a pretty face

 Key results on the dust properties and structure of our nearest neighbour

HELGA III:

- We measure a global SFR in Andromeda of ~0.25M_{sol}/yr.
- Both molecular gas and dust are more spatially correlated with star formation than total gas.
- We find evidence for a sub-linear SF Law in M31 on small scales.

Thanks for listening.

HELGA I: Global dust & gas morphology (Fritz, J. et al. 2012, A&A, 546, A34)

HELGA II: Dust and gas in M31 (Smith, M. W. L. et al. 2012, ApJ, 756, 40)

HELGA III: The star formation law in M31 (Ford, G. P.+ et al 2013, ApJ, 769, 55)

HELGA IV: GMC catalog & spiral structure (Kirk, J. M. et al 2013, arXiv1306.2913)

HELGA V: Panchromatic SED fitting (Vianne, S. et al, in prep.)

Comparison of SFR tracers

Figure 1.6 Left, star formation rate map obtained using the FUV and $24 \,\mu\text{m}$ emission (FWHM beamwidth = 6", pixel size = 1.5"); right, total FIR luminosity at $\lambda > 70 \,\mu\text{m}$ (FWHM beamwidth and pixel size = 36"), found by integrating the emission from *Herschel* and *Spitzer* observations shown in Figure 1.3. The SFR from infrared luminosity is found using a constant conversion factor based on the assumed IMF and assumed length of the continuous starburst.

Comparison of SFR tracers

Figure 1.7 Left: Σ_{SFR} (star formation rate surface density) found from FIR luminosity (assuming a Salpeter IMF) vs Σ_{SFR} from FUV and 24 µm emission (scaled to match values assuming a Salpeter IMF and without a correction for the old stars). The colours represent the density of datapoints. The solid black line indicates a 1:1 relationship, the dashed black lines are factors of 4 offset. Right: ratio of Σ_{SFR} from FIR luminosity to Σ_{SFR} from FUV + 24 µm star formation surface density with radius. The errorbars represent one standard deviation of the scatter in this value across each elliptical annulus.

Correction for old stars

Figure 1.5 FUV (left) and $24 \,\mu\text{m}$ (left) vs $3.6 \,\mu\text{m}$ emission. The black dashed trendline in the left plot indicates the correction for the old stellar population used in Leroy et al. (2008), based on $I_{\rm FUV}/I_{3.6}$ found in ellipticals. The solid trendline is the best fit to FUV vs $3.6 \,\mu\text{m}$ in the inner regions of M31 ($r < 0.1 R_{\rm M31}$, see Appendix). The solid trendline in the right plot is the best fit to $24 \,\mu\text{m}$ vs $3.6 \,\mu\text{m}$ in the inner regions. This agrees with the Leroy et al. (2008) value.

Gas-to-dust with radius

Figure 1.8 Gas to dust ratio with radius in M31 for monatomic hydrogen (HI), molecular hydrogen (H₂) and total gas (HI + H₂) with a factor of 1.36 for heavier element abundances.

Figure 1.12 Kennicutt-Schmidt parameters with radius across M31. We compare the power law indices, N (left) and mean gas depletion time (τ_{dep} , right) using HI + H₂, H₂ only and total gas mass traced by dust. The dashed lines indicate the global values for M31. Errorbars represent the 2σ uncertainty in N and the standard deviation in the distribution of τ_{dep} .

Why the shallow slope?

- Recent work has suggested -2 that the SF law is actually امو(SFR) [M_© yr⁻¹] له linear (N=1) assuming other factors remain constant.
- Still a very open question...

