

Chemical enrichment of the Interstellar Medium through the Mass Loss of Evolved Stars

1. Introduction

* old giant stars: lose mass via stellar wind

* wind: molecules (>70) + dust (>15) → unique chemical laboratories

2. Importance (super)giant stars

✓most important sources for enrichment ISM

✓dynamically quite `simple' molecules + dust

astrochemistry in giant winds \rightarrow more complex systems

3. Stellar wind: from micro-scale chemistry to macro-scale dynamics

4. Role of Herschel: historical move from 1 to ~50 targets

p.4

4. Role of Herschel

4. Role of Herschel

4. Role of Herschel: H₂O

4. Role of Herschel: H₂O

→ Gas-dust interaction

Lombaert et al. 2013

6. H₂O in carbon-rich winds

 \rightarrow Formation of warm H₂O-vapour in the sooty outflow of giant stars

6. H₂O in carbon-rich winds

Before Herschel: origin (cool) water vapour

(1) R>15 R*: sublimation of icy bodies (Melnick et al. 2001)

- (2) **R>15 R***: grain surface reactions (Fischer-Tropsch catalysis, Willacy 2004)
- (3) **R>150 R***: radiative association O+H₂ (Agúndez et al. 2006)

SWAS

After Herschel: origin warm water vapour

After Herschel: origin warm water vapour

(1) penetration of UV photons in clumpy wind
 →photo-dissociation of CO, SiO: free O
 →reaction with H₂: creation OH and H₂O
 (Decin et al. 2010, Agúndez et al. 2010)

(1) penetration of UV photons in clumpy wind
 →photo-dissociation of CO, SiO: free O
 →reaction with H₂: creation OH and H₂O
 (Decin et al. 2010, Agúndez et al. 2010)

6. H₂O in carbon-rich winds: sample analysis (Lombaert et al. 2013)

6. H₂O in carbon-rich winds: sample analysis (Lombaert et al. 2013)

<u>Method</u>: * observe 18 carbon stars with PACS (MESS GTKP + OT2) * different variability type, mass-loss rate, expansion velocity, ... * select 7 unblended H₂O lines and 6 CO lines

Result: (1) H₂O (up to E_{up} = 200K) detected in <u>all</u> carbon stars (2) H₂O (E_{up} > 200K) detected for all *low mass-loss rate* stars (3) opposite trend H₂O strength with mass-loss rate, except SRb → change H₂O abundance with 3 orders of magnitude (4) increase H₂O abundance (r<50R*) – outside acceleration zone from line excitation analysis

6. H₂O in carbon-rich winds: sample analysis (Lombaert et al. 2013)

7. Conclusion

7. Conclusion

- P1-76: 'HCN emission around IRC+10216: the HIFI view', De Beck et al
- P1-77: 'When twins are not identical: a HIFI scan of IRAS 15194-5115, the stellar twin of IRC+10216', De Beck et al.
- P1-106: 'First results from the Molecular Line Survey with HSO/HIFI of the Rotten Egg Nebula', Sanchez-Contreras et al.
- P2-35: 'Study of th 69 micron band of crystalline olivine around evolved stars', Blommaert et al.
- P2-36: 'The Herschel View of Yellow Hypergiants as post-red Supergiants in a pre-luminous blue variable phase', Cox et al.
- P2-38: 'Revealing Astrospheres Around Young and Old Stars in the Far Infared', Cox et al. ~10K ~10K
- P2-41: 'The case of the Exploding Star V838 Mon Observed with Herschel', Exter et al.
- P2-43: 'An independent Distance Estimate to CW Leonis', Groenewegen et al.
- P2-48: 'Superwinds from extreme OH/IR stars', Justtanont et al.
- P2-50: "Herschel probes The Mass Loss Evolution During the AGB Phase', Kerschbaum et al.ns wind wind
- P2-53: 'The Herschel Planetary Nebulae Survey HerPlaNS', Ladjal et al.
- P2-57: 'SPIRE and PACS observations of the red supergiant VY CMa', Matsuura
- P2-76: 'Observations of the circumstellar ammonia lines in carbon-rich AGB stars by Herschel Space Observatory', Schmidt et al.
- P2-81: 'Time Variability of Thermal Molecular Emission in IRC+10216', Teyssier
 wind wind wind shock p.26

Thank you

