Time Variability of Molecular Emission in the Circumstellar Envelopes of Evolved Stars

J. Cernicharo,

See Poster by D. Teyssier P78,
See Poster by M. Groenewegen P42
The origin of this talk: The line survey of IRC+10216 May 2010

DOI: 10.1051/0004-6361/201015150
© ESO 2010

Herschel/HIFI: first science highlights

LETTER TO THE EDITOR

A high-resolution line survey of IRC +10216 with Herschel/HIFI

First results: Detection of warm silicon dicarbide (SiC₂)

(Affiliations are available on page 5 of the online edition)

Received 4 June 2010 / Accepted 26 July 2010

ABSTRACT

We present the first results of a high-spectral-resolution survey of the carbon-rich evolved star IRC+10216 that was carried out with the HIFI spectrometer onboard Herschel. This survey covers all HIFI bands, with a spectral range from 488 to 1901 GHz. In this letter we focus on the band-1b spectrum, in a spectral range 554.5–636.5 GHz, where we identified 130 spectral features with intensities above 0.03 K and a signal-to-noise ratio >5. Detected lines arise from HCN, SiO, SiS, CS, CO, metal-bearing species and, surprisingly, silicon dicarbide (SiC₂). We identified 55 SiC₂ transitions involving energy levels between 300 and 900 K. By analysing these rotational lines, we conclude that SiC₂ is produced in the inner dust formation zone, with an abundance of ~2 × 10⁻⁸ relative to molecular hydrogen. These SiC₂ lines have been observed for the first time in space and have been used to derive an SiC₂ rotational temperature of ~204 K and a source-averaged column density of ~6.4 × 10¹⁵ cm⁻². Furthermore, the high quality of the HIFI data set was used to improve the spectroscopic rotational constants of SiC₂.
Fig. 1. Spectra of IRC+10216 observed with HIFI band 1b. *The two upper panels* present the complete spectrum on two different intensity scales. The panels below show different 3 GHz wide ranges of the survey. All data have been smoothed to a spectral resolution of 2.8 km s⁻¹ except for *the right bottom panel*, which shows the spectrum around several vibrational lines of HCN with the nominal WBS resolution (1.1 MHz, ≈0.5 km s⁻¹).
Unexpected observation of anomalous line intensity fluctuations during the search for Hydrides in IRC+10216. No maser lines

Red = Hydrides Search
Dec 2010

Black = Line survey
May 2010
Some lines had identical intensities, other were showing important intensity fluctuations.
2.4. Time variability

IRC+10216 is known to be a Mira-type variable with a periodicity of 1.71 yr. Its 10 μm flux varies by a factor of 2 between minimum and maximum. Because of the calibration method described above, it was important to check for time-related intensity variations. Depending on the relative importance of radiative and collisional excitation, the millimeter line intensities may or may not follow the infrared flux variations. Among the 2-mm lines, the most likely to be affected are: i) those of CS, HC₃N, SiO and SiS, four species whose IR lines are known to be optically thick, as well as ii) the vibrationally excited lines of C₄H and HCN (Lucas & Cernicharo 1989). These lines were observed at several occasions during the 10 yr-long observing period. The ground-state mm lines, observed at a resolution of ≃ 2 km s⁻¹, were found to have stable shapes and intensities (within 20% which is consistent with our calibration uncertainty). The ν = 1, J = 3 − 2 line of CS and several mm lines of vibrationally excited C₄H were observed with a good signal-to-noise ratio at different IR-phase periods in the course of our survey. We saw no intensity variations > 20% which could be correlated with the IR flux phase. However, the strong ν₂ = 1, J = 2 − 1 line of HCN near 177 GHz shows factor of 2 intensity variation with time; this line, however, is known to be masering (Lucas & Cernicharo 1989).

Intensity comparisons are more difficult for weaker lines. We can only quote an upper limit of 20%, which represents the scatter of the intensities recorded at different epochs for the 0.3 − 0.5 K lines. Most of this scatter is probably related to calibration errors, since we found no obvious relation with the IR flux variations.
TIME MONITORING OF THE SiS (J=4-3, 5-4, AND 6-5) EMISSION FROM IRC+10216

U. CARLSTRÖM, H. OLOFSSON, L.E.B. JOHANSSON
Onsala Space Observatory, Sweden

NGUYEN-Q-RIEU
Observatoire de Meudon, France

R. SAHAI
Institute of Theoretical Physics, Chalmers University of Technology, Göteborg, Sweden

Introduction
We have monitored the SiS (J=4-3, 5-4, and 6-5) emission from IRC+10216. Our aim was to find a correlation between the properties of the lines and the IR flux. The observations were performed with the Onsala 20 m telescope between March 1980 (JD=2 444 300) and September 1987 (JD=2 447 060) with emphasis on the period May 1984 to April 1986 during which data were taken every 3-4 months. This interval corresponds to approximately one period of the IR light curve of IRC+10216. The frequency ranges used in order to cover the investigated lines of the SiS molecule were: 72.6 GHz (J=4-3), 90.8 GHz (J=5-4) and 108.9 (J=6-5). The backends consisted of a 512x1 MHz filterbank and a high resolution 256x0.25 MHz filterbank.

Data analysis
At a first glance at the data one clearly sees the line shape variation of the J=5-4 line, figure 1. It is less obvious in the J=6-5 line and not apparent in the J=4-3 line. The time scale of the changes is in the range of that of the IR light curve of IRC+10216. As a

Many SiS v=0 lines are masering (Fonfría et al., 2006, ApJ, 646, L127)
A MOLECULAR TIME MONITORING OF IRC+10216

• A Total of five observing runs with HIFI/SPIRE/PACS
• Lines selected on the basis of variations observed between the line survey and the hydrides proposal
• Full scans with SPIRE and PACS. All bright lines observed and monitored
• Complemented with 12 observing sessions every 2 months with the 30-m radio telescope. Selected lines of CCH/HNC/SiS/SiO and whole 3mm band. CCH J=4-3 & J=3-2 and HNC J=3-2
CCH variability

See also Poster P78
HNC VARIABILITY
H$_2$O VARIABILITY

HCN VARIABILITY
SiS VARIABILITY
CO and 13CO VARIABILITY
SPIRE FTS
All Medium excitation lines of HCN, CO, CS, SiS
Blended with $H^{13}CN$ vib

$\text{mean} = 26. (1.2)$

$\text{mean} = 27. (0.6)$

$\text{mean} = 37. (1.1)$

$P = 680 (22) \text{ d}$

$\psi = 149 (13) \text{ d}$

$\text{mean} = 25. (1.0)$

$\text{mean} = 28. (1.1)$

$\text{mean} = 27. (1.0)$

$\text{mean} = 30. (1.3)$

$\text{mean} = 27. (1.0)$
PACS
High-J lines of HCN, CO, CS, SiS
Very preliminary analysis of time lags

\[\psi = 296 (7) \text{ d} \]
\[\psi = 231 (16) \text{ d} \]
\[\psi = 266 (6) \text{ d} \]

See Poster by Teyssier et al. P78
Can we continue to assume \(\frac{dn(J,v)}{dt} = 0 \) in presence of an IR flux perturbation?

Phase lag between different points of the CSE has to be included in RT equations.

Time to cross the shell = \(\frac{R_{\text{ext}} - R_{\text{in}}}{c} \approx \) a few days

Vibrational Einstein coefficients \((A_{ij}) \sim 0.1-1 \, \text{s}^{-1} \)

Collisions \(\sim 1-3 \times 10^{-4} \times 10^{-10} \sim (1-3) \times 10^{-6} \, \text{s}^{-1} \) (3-10 days)

Rotational \(A_{ij} \sim 10^{-3} - 10^{-7} \, \text{s}^{-1} \) (hours to weeks). Depending on \(J \) and on the molecule.
H to N stretch
\[\nu_1 \rightarrow 3652 \text{ cm}^{-1} \]
\[
\begin{array}{ccc}
\text{H} & \rightarrow & \text{N} \\
& & \rightarrow \\
& \rightarrow & \text{C}
\end{array}
\]

N to C stretch
\[\nu_3 \rightarrow 2024 \text{ cm}^{-1} \]
\[
\begin{array}{ccc}
\text{H} & \rightarrow & \text{N} \\
& & \rightarrow \\
& \rightarrow & \text{C}
\end{array}
\]

Bend. \[\nu_2 \rightarrow 464 \text{ cm}^{-1} \]
\[
\begin{array}{ccc}
\text{H} & \rightarrow & \text{N} \\
& & \rightarrow \\
& \rightarrow & \text{C}
\end{array}
\]

HNC, an example of IR pumping

HNC Daniel et al., 2012, 542, A37
CCH De Beck et al., 2012, 539, A108
Conclusions

• Most molecular Lines in evolved stars can not be used as standard calibrators. Stellar phase is a real concern and a physical basic parameter for any realistic model.

• Determination of isotopic abundance ratios have to be done from simultaneous observations.

• Radiative Transfer in molecular lines affected by infrared pumping has to include a time dependency to account for the infrared flux variations. High-J lines of all molecules affected by IR pumping, even CO.

• If the lines are arising from shells at a given distance from the star the delay between the blue (rear) and red components (front) fluctuations could provide, through a detailed RT analysis, some information on the distance => spatial knowledge of the origin of the emission is needed.

• Molecules abundant in the inner and external regions “could” be less affected by the infrared variations at large distance in the low-J lines. Molecules abundant only in the external regions of the envelope are strongly affected by the infrared flux variations for all Js.

• Some molecules do not show any evident variation of the emerging flux (SiC$_2$ for example). Probably depends on the vibrational dipole moments.