Herschel/PACS variability survey of IC348

Zoltan Balog MPIA

Collaborators:

James Muzerolle (STScI) Kevin Flaherty (Univ. of Arizona) Rob Guthermuth (Umass) Elise Furlan (IPAC) Ors Hunor Detre & Jeroen Bouwmann (MPIA) Gabor Marton (Konkoly Observatory)

Variability of YSOs

• Variability is a common property of YSOs (Joy, 1945)

- optical / near-IR: accretion shocks
 - several surveys at different wavelengths
- mid-IR: inner disk structure (warped disks, variable scale height)
 - Spitzer/YSOVAR Morales-Calderón et al. 2009
 - Flaherty et al. 2011,2013 (Spitzer IC348)

- far-IR: variable illumination of cold outer disk (class II) or luminosity fluctuations (class 0/I)
 - reason: variable accretion, variation in the scale-height of the inner disk
 - very little pre-Herschel data
 - Juhász et. al. (2007), Kóspál et al. (2007) ISOPHOT
 - •Harvey et al. (1998), KAO

Variability of YSOs

The situation improved a lot with Herschel

- P27: Ábrahám et al.
 - Deep 70 µm map of LDN 1688, obtained
 2 years after the HGBS
 - Comparison of the two maps revealed 11 variable objects at the >30% level
- P50: Kóspál et al.
 - 4-epoch weekly monitoring of 8 selected T Tauris in Cha I
 - 6 sources show 5–11% variability on weekly timescale
- P32: HYSOVAR Billot et al. 2012
 - I8-epoch through 4 visibility windows
 - several variable object on the 10%-50% level
 - see also Billot et al. 2012

Observations and Data Reduction

Gutermuth et al. 2009 red: 24 μm; green: 5.8 μm; blue: 3.6 μm

IC348

- relatively nearby ~400pc
- contains all kinds of YSOs class 0 class II
- well studied at shorter wavelengths

DATA

- 29 epoch in three visibility windows
- covering more than a year in time with different timescales
 - ~1 year, ~2 months, ~2 weeks, ~2 days
- ~15'x15' area
- \bullet most of the Spitzer 70 μm detections
 - trade-off had to be made to keep observing time reasonable
- The data were uniformly processed with three methods
 - Scanamorphos
 - JScanam
 - High Pass Filtering
- Photometry was performed in HIPE using circular apertures and using the the boloSource() algorithm
- all gave similar results with some systematic differences, however it did not influenced the variability

Photometric stability of the PACS instrument

1.1 • absolute flux accuracy ~7% 1.05 • repeatability ~2% lux/model flux • it is tested only in high-pass filter + photProject 1 • other processing methods might introduce a up to 0.95 5-10% systematic error see: 0.9 0 200 400 1200 1400 1600 600 800 1000 http://herschel.esac.esa.int/2013Mapmaking **Operational Days**

Workshop/presentations/PACS_PointSourcePhotometry_ZBalog_MapMaking2013_DPWS.pdf

• for more information on the calibration see Balog et al. 2013 Exp. Astr. in press: http://link.springer.com/article/10.1007%2Fs10686-013-9352-3 Photometric stability of the PACS instrument

- Tools are in place to improve the repeatibility.
- They are being tested
- Final goal: ~0.5% in the blue camera and 2% in the red

Photometric stability of the PACS instrument

- Tools are in place to improve the repeatibility.
- They are being tested
- Final goal: ~0.5% in the blue camera and 2% in the red

boloSource() - interpolation in the timeline

boloSource() - interpolation in the timeline

Original images processed with Scanamorphos

boloSource() - interpolation in the timeline

Interpolated images processed with Scanamorphos

Red: I60 μm Green: I00 μm Blue: 70 μm

Maps and detected sources

- 46 sources detected on the combined images
- 37 sources were suitable for photometry on the individual images
 - 30 mJy 10.5 Jy at 70 μm
- photometric uncertainity is impossible to estimate on the single epoch maps

Variability							
Name		70	160	rms: ~1 year	rms ~2 months	rms ~2 weeks	rms ~3 days
LRLL0245	class I/II	1.377	1.039	0.201	0.066	0.037	0.031
LRLL54361	class I	7.324	9.668	0.619	0.287	0.257	0.054
HH211	class 0	4.565	31.054	0.054	0.053	0.016	0.007
LRLL57025	class 0/I	5.864	25.456	0.0618	0.029	0.006	0.009
SSTc2d_J034357.8+320312		1.371	12.392	0.091	0.026	0.026	0.050
LRLL0051	class I/II	8.472	5.952	0.071	0.059	0.064	0.028
LRLL0031	class II	0.869	1.244	0.077	0.071	0.040	0.031
LRLL1889	class I	1.261	I.884	0.081	0.092	0.050	0.026
LRLL1872	class I	5.108	16.114	0.146	0.220	0.018	0.083
LRLL1898	class I	10.450	25.586	0.152	0.200	0.017	0.010

- large variations at all IRAC wavelengths detected in our Spitzer/IRAC survey with a period of 25.34 days
- HST observations reveal a spectacular light echo (Muzerolle et al. 2013)

Explanation: binary induced pulsed accretion

disk accretion rate: 10⁻⁶

Explanation: binary induced pulsed accretion

Static models of the minimum and maximum reveal the physical properties of the source:

Envelope infall rate: $3 \times 10^{-6} \text{ M}_{\odot} \text{yr}^{-1}$ envelope centrifugal radius: $R_c = 30 \text{ AU}$ outflow cavity opening angle: $\theta = 30^{\circ}$ angle of the outflow/stellar rotation axis to the line of sight: $i = 70^{\circ}$ total central luminosity (stellar plus accretion) $L = 0.5 \text{ L}_{\odot}$ and 1.3 L_{\odot} $\eta_{star} = 0.5$ (min) and 0.19 (max) CO₂ ice abundance of 10⁻⁴, and an H₂O ice abundance of 2×10⁻³

Herschel observations also reveal periodic variations

Two different maxima showed that there is a difference between two periods. It can be modeled entirely with accretion variations

LRLL54361 - light echo

LRLL54361 - light echo

Summary

- multi epoch photometric survey of IC348 with Herschel/PACS at 70 μm and 160 μm
- 46 sources detected including all sources detected with Spitzer/MIPS at 70 μm
 - brightness range ~ 30 mJy 10.5 Jy
- 10 sources shows reliable variability on the scale of \sim 1 year
 - majority of the sources show variability on the scale of 2 months
 - some show even reliable weekly or daily variability
 - all brighter than 800 mJy
 - fainter sources show some sign of variability but needs confirmation
- periodic variation of LRLL54361 is confirmed in the far-IR
 - the maximum flux varies from period to period (also in mid-IR)
 - accretion rate at maximum light varies by an order of magnitude
 - \bullet tentative detection of the near-IR light echo at 70 μm