The WISH view of the massive star formation

Fabrice Herpin LAB/OASU-Bordeaux France

WISH

PI E. van Dishoeck

• F. Herpin, T. Jacq, J. Braine, A. Baudry, S. Bontemps (Bordeaux) + A. Karska (Leiden)

Ccnes

- F. van der Tak, Y. Choi, R. Shipman, W. Kwon, F.P. Helmich, (Groningen)
- F. Wyrowski, S. Leurini, T. Csengeri (Bonn)
- L. Chavarria, J. Goicoechea, F. Daniel, J. Cernicharo, (Madrid)

The high-mass star formation puzzle

Formation of massive stars not well understood. Classical scheme for low-mass star formation cannot be applied as such to OB stars.

WISH

Most problematic issue: how to accumulate a large amount of mass infalling within a single entity despite radiation pressure.

⇒ Models considering a protostar-disk system (e.g. Krumholz et al. 2005) now quite successfully

address how the accretion of matter overcomes radiative pressure.

Two main theoretical scenarios have been proposed to form high-mass stars, both requiring the **presence of a disk** and **high accretion rates**:

(a) turbulent core model with a monolithic collapse scenario (Tan & McKee 2002, McKee & Tan 2003);

(b) highly dynamical **competitive accretion model** involving the formation of a cluster (Bonnel & Bate 2006)

water might help cooling
water = probe of the dynamics of the gas

High-mass protostars observations

mIR-quiet HMPOs IRAS05358+3543 IRAS16272-4837 NGC6334-I W43-MM1 DR21(OH)

mIR-bright HMPOs

W3-IRS5 IRAS18089-1732 W33A IRAS18151-1208 AFGL2591

evolution

Hot Molecular Cores

G327 - 0.6NGC6334-I(N) G29.96-0.02 G31.41+0.31

UC HII Regions

- G5.89-0.39 G10.47+0.03 G34.26+0.15 W51N-e1
- NGC7538-IRS1

- pointed HIFI obs of 14 water lines, including $H_2^{18}O$, $H_2^{17}O$
 - \Rightarrow abundance + distribution of H₂O in envelopes
 - **maps** : HIFI1₁₀-1₀₁ & 2_{02} -1₁₁ mini-maps + 1₁₁-0₀₀ large maps

maps : HIFI1₁₀-1₀₁ & 2₀₂-1₁₁ mini-maps + 1₁₁-0₀₀ large maps \Rightarrow water in massive outflows, filling, cooling & chemistry of intra-cluster gas Complementary PACS data

HMPOs: evolutionary status

	Object	D	Lhol	Menv	$\overline{F_{12}}^a$	F_{21}^{a}	$L^{0.6} M_{\rm env}^{-1}$	λ_{Fmax}	F_{35}/F_{total}
_	-	(kpc)	(L_{\odot})	(M_{\odot})	(Jy)	(Jy)		(µm)	
51	NGC6334I(N)	1.7	1.9×10 ³	3826	0.0	0.6	0.02	152.9	1.0
اڭ ا	W43-MM1	5.5	2.3×10^{4}	7550	0.94	3.8	0.05	110.6	1.8
2	DR21(OH)	1.5	1.3×10^{4}	472	0.3	3.5	0.6	92.4	3.0
Q	IRAS16272-4837	34	2.4×10^4	2170	1 39	55.9	0.2	77.2	68
e	IRAS05358+3543	1.8	6.3×10^3	142	0.56	24.3	14	78.2	8.8
•	10000000000	1.0	0.5/10	172	0.50	24.5	1.7	10.2	0.0
		205358			1		40 55 220 1		
		1					40, 55, 220 r	-	
	10000	кре					$16.4 M_{\odot} \ln 0.$	pc _	
	-			F	max		6.2e3 L _⊙	-	
	1000 -							_	
		F ₃	5			₹		-	
			-		÷ .	F _n	_{nax} = 1206 Jy (78	$.3 \ \mu m)^2$	
	<u>r</u> 100					a the second sec			
	\times					- `	Ę	-	
					÷ .		A	-	
			7				- \		
	1							_	
	¹ e	voluti	on 🦯				×		
			ev	olutio	n			-	
	0.1		/-		÷ .				
			/		·				
	0.01							-	
	1		10		100		1000		
			TAT		ath []			
			٧V	aveien	gtn [/	umj			

H₂O line profile analysis: modelling

0.5

80

100 v_{lsr} [km/s] 120

Source model

Whitney-Robitaille (2003)

Line modeling RATRAN

Hogerheijde & van der Tak (2000)

Water collisional rates: Daniel, Dubernet & Grosjean (2012) & BASECOL

Lines fitting for mid-IR quiet MYSOs: W43MMI Herpin et al (2012)

Abundances and dynamics results

										_
	Object	Xout 10 ⁻⁸	Xin 10 ⁻⁵	M _{H2}	0 1	M _{H20} /M 10 ⁻⁷	env 1	M _{H2} O,inner	/M _{H2O,total} %	
	NGC6334I(N)	1.3	0.05	6.8 × 1	0-4	1.8		4	.8	╈
Water	W43-MM1	8.0	14	0.11	0.11			2.8		
	DR21(OH)	15	0.5	8.3 × 1	8.3×10^{-4}		5 1		.5	
	IRAS16272-4837	6.6	0.17	1.8×1	1.8×10^{-4}		33		2.7	
	IRAS05358+3543	4.4	1.3	$3 9.6 \times 10^{-5}$		6.8		42.7		J
	Object	Δv _b , [km	r,max 1/S]	<i>I_{out,987}^a</i> [K.km/s]	L _{tot}	$/(c.v_{inf})$ $_{\odot}.yr^{-1}]$	<i>№</i> [M _☉	[acc .yr ⁻¹]	L_{acc} [L _o]	
	NGC6334I(N)	32.0		41(3) 7.6		× 10 ⁻⁵	2-3.5	5×10^{-4}	2.3	
Accretion	W43-MM1	35	35.5 30 (2) 1.6×10^{-4} $3 - 4 \times 10^{-5}$		× 10 ⁻²	300				
	DR21(OH)	25.5		82 (2) 1.7		× 10 ⁻⁴	3.8 – 7	7 × 10 ⁻⁴	1.0	
	IRAS16272-4837	31.1		11(2) 1.		× 10⁻⁴	1.3 – 2.	.8 × 10 ⁻⁴	0.5	
	IRAS05358+3543	28	3.5	23(3)						

ж wisн

⇒ Accretion rates high enough to overcome the strong radiation pressure

= in aggreement with McKee & Tan (2002, 2003): massive molecular cloud cores, from which a few massive stars form, should be dominated by supersonic turbulence, with high accretion rate.

Turbulence variation with R

=	Object	$\Delta v_{br,max}$ [km/s]	<i>I_{out,987}^a</i> [K.km/s]	I_{out}/I_{em1113} %	I_{out}/I_{em987} %	<i>I_{out} / I_{em752}</i> %	I_{out}/I_{em1097} %	H ₂ ¹⁸ O detected ?	V _{turb} (var?)
- 7	NGC6334I(N)	32.0	41(3)	100	61	70	64	+	2-3 (yes)
	W43-MM1	35.5	30(2)	100	100	47	0	++	2.2-3.5 (yes)
	DR21(OH)	25.5	82(2)	90	60	75	55	++	2-3.5 (yes)
	IRAS16272-4837	31.1	11(2)	97	82	65	75		2.2-2.4 (flat)
	IRAS05358+3543	28.5	23(3)	75	80	75	70	-	1.5-2.5 (uncertain)

Highly supersonic turbulence, increasing with radius

 \Rightarrow while not in clear disagreement with the competitive accretion scenario, this **behaviour is predicted by the turbulent core model** (Krumholz & Bonnel 2009)

PACS High-mass protostars observations Karsk

Karska, Herpin et al. (in revision)

see posters by Karska et al. Kwon et al.

HERSCHEL OBSERVATORY

Rich molecular and atomic spectra in the 55-190 μm
 CO, H₂O, OH, CH + OI, CII, OIII, NII

~50 lines of H_2O with E_{up} up to ~1000 K detected in W3 IRS5!

- CO dominates the cooling of young objects (median ~75%)
- [OI] increases for the more evolved sources (~20%)
- H₂O and OH minor contribution (<1%)

From low- to high-mass objects: far-IR gas cooling

Far-IR gas cooling

• Far-IR line cooling strongly correlates with *L*_{bol}, in agreement with low-mass studies

(Nisini+2002, Karska+2013)

- Ratio of molecular and atomic cooling ~4 for all sources
- Gas to dust cooling ratio decreases ~20 times for high mass sources
 - (H₂O in absorption)

Conclusions

- water abundance jump = 2-steps water abundance profile (≠low-mass)
- massive protostars are not so dry, but not so wet... ⇒ water is not the key, but help
- X_{in} increasing with evolution, V_{exp,inf}? W43MM1 a peculiar case, why?
- \Rightarrow origin of the overabundance of water
 - hot core where H_2O ice evaporates
 - shocks?

 \Rightarrow higher water abundance might be related to the large infall or expansion, high turbulence and the micro-shocks created by its dissipation

- CO dominates the cooling of young objects, [OI] increases for the more evolved ones
- H_2O and OH have a minor contribution in the cooling
- high accretion rate

⇒ high enough to overcome the radiation pressure due to the star luminosity (Hosokawa & Omukai 2009). Confirms McKee & Tan (2003).

• highly supersonic turbulence, increasing with radius

⇒ while not in clear disagreement with the competitive accretion scenario, this **behaviour** is predicted by the turbulent core model (Krumholz & Bonnel 2009)

Thanks for your attention !

Thanks CNES for its financial support