A. Poglitsch

for the

SHINING Consortium

High-J CO in local galaxies with Herschel

- CO SLED observations of "template" galaxies
- Probing AGN environment
- CO line ratios as new diagnostic tool

Extragalactic CO Observations and their Interpretation

A. Poglitsch

Extragalactic High-J CO: "Historical" context

Krolik & Lepp (1989):

If the AGN torus exists, it should emit not only in thermal continuum (mid-IR), but also in molecular cooling lines (e.g. FIR)

 \rightarrow detectable fraction of L_{bol} in IR molecular lines (mid-IR H₂, far-IR CO)

Promise of high-J CO lines: strong enough, little extinction, not or only weakly produced in normal star formation regions (i.e. direct tracer of torus)

A. Poglitsch

A. Poglitsch

Extragalactic High-J CO: "modern" context

A. Poglitsch

High-J CO \rightarrow A new probe of warm and dense molecular gas

SB, AGN, feedback, galaxy evolution
UV/X-ray (AGN torus)
Cosmic rays
Jets
Turbulence
Mergers vs. cold accretion
Galaxy dynamics
Outflows

Methods

Galactic templates Non-LTE radiative transfer PDR/XDR/shock models High resolution spectral imaging

Nearby templates:

M82(SB) NGC1068 (Sy)

Extragalactic CO Observations and their Interpretation

A. Poglitsch

A. Poglitsch

- Higher J lines much brighter than PDR predictions *⇒not tracing UV-heated gas*
- Cosmic ray density too low
- Dissipation of turbulence
 - ⇒ stellar wind and supernovae

A. Poglitsch

Meijerink & Spaans 2005

Meijerink + 2007

C-shock models models:

Flower & Pineau Des Forêts 2010

Hailey-Dunsheath+ 2012 Janssen+ in prep.

PDR

shock

Extragalactic CO Observations and their Interpretation

A. Poglitsch

XDR / PDR models:

Meijerink & Spaans 2005

Meijerink + 2007

C-shock models models:

Flower & Pineau Des Forêts 2010

PDR

shock

Extragalactic CO Observations and their Interpretation

A. Poglitsch

A. Poglitsch

Application to ULIRGs

Extragalactic CO Observations and their Interpretation

A. Poglitsch

LVG Modeling

Mashian, Sternberg, Sturm, Poglitsch + in prep

Extragalactic CO Observations and their Interpretation

A. Poglitsch

CO Line Ratios in local ULIRGs

Characterizing the excitation of the molecular gas and the nature of the energy source

A. Poglitsch

A. Poglitsch

What next?

Extragalactic CO Observations and their Interpretation

A. Poglitsch

CO at high redshifts - Caveats

Extragalactic CO Observations and their Interpretation A. Poglitsch

Summary

- High-J CO lines (together with ionized species like H₂O⁺ and OH⁺) are a promising tool to help distinguish between XDR, PDR, CDR and shock excitation/chemistry
- However, observationally there is a lot of scatter, and a good sampling of the CO line SED up to really high-J (J \approx 40 at 65µm) is needed (and expansion of the models)
- Ratio-ratio diagrams (a la CO(18-17)/CO(1-0) vs. CO(6-5)/CO(1-0) must be explored more, both, observationally and theoretically
- Interpretation of high-z high-J CO lines (e.g. CCAT, NOEMA, ALMA) not straightforward!

Summary

- I pc torus (basis of Krolik & Lepp 1989) excluded
- "Clumpy Torus" models with slightly larger extension (~10pc) could still work. Testing needs inclusion of gas/line emission in these models, and observations up to really high J
- Further "calibration" of the methods and the models with SPICA – both MCS and SAFARI – at spatially resolved nearby template objects will be critical