Galaxy Evolution as seen by PACS

E. Sturm

(MPE)

for the SHINING and PEP Teams

Current deep far-infrared data (4'x4' cutout in UDF region)

GOODS, PEP, HerMES, LESS

Resolved into individually detected sources: ~75% @ 100μm ~75% @ 160μm

The cosmic infrared background resolved

Berta+10,11 Magnelli+13

the contribution of different redshift bins to the CIB, i.e. the fraction of CIB emitted at different cosmic epochs:

At 160 μm half of the resolved CIB originates at z>1

E. Sturm

The main sequence of star formation

Brinchmann+04, Noeske+07, Daddi+07, Elbaz+07, Peng+10, Rodighiero+10, ...

The main sequence of star formation

Brinchmann+04, Noeske+07, Daddi+07, Elbaz+07, Peng+10, Rodighiero+10, ...

The main sequence of star formation

What controls the position of a galaxy in the SFR-M_{*} plane?

- Are there different modes of star formation?
 e.g. Gas fractions?
 Star formation efficencies ?
- What is the role of mergers as opposed to secular evolution ?
- What different galaxy properties do the different populations in this plane reflect (e.g. sizes, morphology, dust temperature, etc.)?
- What is the role of AGN?
 e.g. Co-evolution?
 Feedback?
 Quenching?

Stellar mass

Brinchmann+04, Noeske+07, Daddi+07, Elbaz+07, Peng+10, Rodighiero+10, ...

Mainsequ

A morphological `main sequence'

Nordon+ 2010, Wuyts+ 2011a,b, Rodighiero+ 2011, Nordon+ 2012, Magnelli+ in prep.

Dust temperatures

Elbaz+ 2011, Magdis+ 2012b, Magnelli+ 2013a

- high redshift starbursts above the main sequence show increased dust temperatures
- dust temperature can be expressed as a function of main sequence offset with less scatter and less redshift dependence compared to expressing temperature as a function of IR luminosity.

Galaxies on and above the MS: the "[C II] deficit"

Graciá Carpio+ 2011

Galaxies on and above the MS: the "[C II] deficit"

Objects above MS: enhanced SFE in warm and compact ISM

Graciá Carpio+ 2011

IRAS F10214+4724

Well studied lensed z=2.29 HLIRG (Sy2) Coeval star formation & AGN Differential magnification AGN/Host \approx 3

MIPS J142824.0+352619

- •A hyperluminous "Monster": Extreme Starburst at z=1.325
- no AGN signatures
- •Lensed by foreground z≈1 elliptical

The Universe Explored by Herschel, ESLAB 2013: Sturm

High-J CO - A new probe of warm and dense molecular gas

Walter & Carilli 2008

The CO Line-SED of NGC1068 from J=0 ...40

The CO Line-SED of NGC1068 from J=0 ...40

High-J CO - A new probe of warm and dense molecular gas

The role of AGN: co-evolution?

The role of AGN: feedback / quenching?

Gonzalez Alfonso+ 2012, 2013 in press

Spoon+ 2013

Veilleux+ 2013

Mass loss rates up to $\sim 1000 \text{ M}_{\odot}/\text{yr} \sim 5 - 10 \text{ x SFR}$

 These ULIRG winds will totally expel the cold gas reservoir in the nuclei in about 10⁶ - 10⁸ yrs, therefore halting the starformation activity on the same timescale.

Sturm+ 2011

What drives these outflows?

Mrk 231 (Sturm+ 2011, González-Alfonso+ 2013 in press):

Mass outflow rate:	$\dot{M}\sim 1000~M_{\odot}~yr^{-1}$
Mass loading factor:	M/SFR ~ 10
Momentum flux:	$\dot{M}v \sim 13~L_{AGN}/c$ (with L_{AGN} = 2.8 x $10^{12}~L_{\odot}$)
Mechanical luminosity:	$0.5 \text{ Mv}^2 = 6 \times 10^{10} \text{ L}_{\odot}$ (2% of L _{AGN})
Depletion time:	M _{gas} /M : ~10Myr

E.g. DeBuhr, Quataert & Ma 2012:

3D SPH simulations of the AGN Wind feedback plus radiation pressure feedback Momentum flux: $\dot{p} \sim \tau L/c$, with τ^{5} -10 needed to explain the M_{BH}- σ relation ram pressure: $\tau < 1 \rightarrow$ energy trapping Depletion time (M_{gas}/M): ~10Myr

Galaxy Evolution as seen by PACS

SUMMARY

Different modes of star formation:

- merger-like, higher SFE vs.
- smooth accretion, normal SFE

Role of AGN / Co-Evolution:

Secular evolution more important at high z

Role of AGN / Feedback & Quenching:

"Caught-in-the-act" negative feedback from radiation driven, molecular outflows in **AGN-dominated ULIRGs**

SUMMARY

Different modes of star formation:

Role of AGN / Co-Evolution:

z=1

Secular evolution more important at high z

Role of AGN / Feedback & Quenching:

"Caught-in-the-act" negative feedback from radiation driven, molecular outflows in AGN-dominated ULIRGs