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INTRODUCTION IRC+10216 is a Mira variable with a long period of ~1.75

years and an amplitude in K of 2 mag. Being a relatively nearby source (110-170 pc), it is
one of the brightest infrared objects and richest molecular sources (>80 molecules
detected) in the sky. The excitation of the rotational levels of most molecules is mainly
collisional and there is no hint of time variability in the millimetre domain (e.g.
Cernicharo et al. 2000). However Herschel/HIFI observations separated by several
months have revealed drastic changes in line intensities of several species, while others
were found to be very stable. This finding was followed-up by subsequent epochs and Alksnis et al. 1989
motivated the study presented here.
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study of the variability in the SPIRE continuum. Infrared 1(0.81), with a period of 635 days

HERSCHEL OBSERVATIONS We have conducted

a monitoring of the thermal molecular emission of more than a
hundred lines in IRC+10216 using all three Herschel instruments.
About 80 selected lines of CO, 3CO, HCN, HNC, H'3CN, CS,
water, SiO and SiS among others, were observed over up to 7
epochs with HIFI, while full range scans were collected with PACS
and SPIRE for up to 8 epochs. A complementary programme is
currently being performed at the 30-m telescope to cover lower
level transitions of these molecules.
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FIGURE 2: HIFI spectra at various epochs for a selection of molecules and transitions. The upper panels of each plot displays the
integrated intensity computed at each epoch (black and blue squares), together with the best sine wave fit (black and blue curves),
normalized to the minimum of the fitted function.The fitted epoch and phase (with errors in brackets) are also shown.

When no decent fit is found, a straight line in red shows the average.

FIGURE 3: SPIRE fitted intensities over various epochs for a selection of
molecules and transitions, together with the best fitted sine wave or mean
intensity when no fit could be achieved (red curve). The fitted epoch and phase
(with errors in brackets) are also shown.
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DISTANCE ESTIMATE Because of the light travel time, the effect of IR-pumping in a given spectrum

v = 296 (7) d ; will manifest at different time lags in different layers of the envelopes. This means that the rear (red-shifted) and
front (blue-shifted) parts of the envelope should have a time delay of 2D/c, with D the distance to the star of
the zone contributing to the observed line. If one then knows the size of this zone in arcsec, the distance to the
star could be inferred. Fig. 5 shows an example of possible time lag difference in the light-curve of various
velocity ranges (red-shifted, central in black, and blue-shifted) in CCH 6-5. The distance inferred here would be
~370 +/-120 pc, i.e. a factor ~3 too large compared to the current assumption for IRC+10216. Note that this
approach does not consider any sophisticated distribution of the envelope layers contributing to the velocity
ranges considered in the fitting and might lead to larger uncertainties.




