SPIRE and PACS spectroscopic observations of the red supergiant VY CMa

(1) University College London, UK, (2) Rutherford Appleton Laboratory, UK, (3) Katholieke Universiteit Leuven, Belgium, (4) INTA-CSIC, Spain, (5) European Southern Observatory, Chile(6) University of Lethbridge, Canada, (7) Royal Observatory of Belgium, Belgium

Summary

We present an analysis of the far-infrared and submillimetre molecular emission line spectrum of the luminous M-supergiant VY CMa, observed with the SPIRE and PACS spectrometers.

- Over 260 emission lines were detected in the 190-650-micron SPIRE FTS spectra, with one-third of the observed lines being attributable to H2O. Other detected species include CO, ¹³CO, H₂¹⁸O, SiO, HCN, SO, SO₂, CS, H₂S, and NH₃.
 Our model fits to the observed ¹²CO and ¹³CO line intensities yield a ¹²C/¹³C ratio of 5.6+-1.8, consistent with measurements of this ratio for other M supergiants, but significantly lower than previously estimated for VY CMa from observations of lower-J lines.
 The spectral line energy distribution for twenty SiO rotational lines shows two temperature components: a hot component at 1000 K, which we attribute to the stellar atmosphere and inner wind, plus a cooler ~200 K component, which we attribute to an origin in the outer circumstellar envelope.
- We fit the line fluxes of ¹²CO, ¹³CO, H₂O and SiO, using the SMMOL non-LTE line transfer code, with a mass-loss rate of 1.85x10⁻⁴ Msun yr⁻¹ between 9 R* and 350 R*. To fit the observed line fluxes of ¹²CO, ¹³CO, H₂O and SiO with SMMOL non-LTE line radiative transfer code, along with a mass-loss rate of 1.85x10⁻⁴ Msun yr⁻¹.
 To fit the high rotational lines of CO and H₂O, the model required a rather flat temperature distribution inside the dust condensation radius, attributed to the high H₂O opacity. Beyond the dust condensation radius the gas temperature is fitted best by an r^{-0.5} radial dependence, consistent with the coolant lines becoming optically thin.

Our H₂O emission line fits are consistent with an ortho:para ratio of 3 in the outflow.

 $^{12}C/^{13}C$ ratio = 5.6+-1.8

pure-rotational transitions in v = 0 of SiO shows a double peak. The fits to these lines suggest a cool component with Tex=200 K and a hotter component with Tex~1000 K.

Non-LTE modelling

Parameters of the non-LTE model that produced the best fits to the Herschel ^{12}CO , ^{13}CO , SiO and H₂O line fluxes of VY CMa.

Model parameters		¹² CO	¹³ CO	H_2O	SiO
Stellar radius R _* (cm)	1.44×10^{14}				
R_{inner} : inner radius of molecular gas envelope (cm)	1.44×10^{14}				
$R_{inner,dust}$: inner radius of dust envelope (cm)	1.283×10^{15}				
Rout flow, break: radius of density discontinuity (cm)	5.0×10^{16}				
<i>R_{outer,dust}</i> : outer radius of model (cm)	2.93×10^{17}				
$^{\ddagger}\beta$: density law index	2.0				
$^{\ddagger}\alpha$: Kinetic temperature law index	0.6				
Turbulent velocity (km s^{-1})	1.0				
X: fraction of molecule/H ₂		2.5×10^{-4}	4.5×10^{-5}	2×10^{-4}	8×10^{-5}
Dust optical depth in the V-band	50				
ρ_d : density of dust (g cm ⁻³)	3.0				
Gas to dust mass ratio: ρ_g/ρ_d	267				
Wind velocities: v_{∞} and v_{inner} (km s ⁻¹)	44.0, 4.0				
Inner radius of velocity law (cm)	1.283×10^{15}				
$^{\ddagger}\gamma$: velocity law index	0.2				
Stellar temperature (K)	2800				
Sublimation temp. of molecule (K)		20	20	100	(1000)/100
Mass-loss rate between $R_{inner,dust}$ and $R_{outflow,break}$ $(M_{\odot} \text{ yr}^{-1})$	1.85×10^{-4}				
Mass-loss rate beyond $R_{outflow,break}$ $(M_{\odot} \text{ yr}^{-1})$	9.3×10^{-5}				
Dust emissivity behaviour κ (>250 μ m)	λ^{-1}				
H ₂ O ortho:para ratio				3:1	
$R_{T,break}$: Radius of break in temperature (cm)	5×10 ¹⁴				
New kinetic temperature law index α at $R_{T,break}$	0.15				
SiO density reduction factor at $R_{innerdust}^{\dagger}$					20

Non-LTE model with a mass-loss rate of 1.85x10⁻⁴ Msun yr⁻¹

The wind structure required by the best-fit SMMOL model

SMMOL fits to the para- and ortho- H_2O lines observed by SPIRE.

The modelling of the water lines used an ortho:para ratio of 3:1 and included masing in the calculation of the level populations. In general, our non-LTE models with masing included can fit the observed H_2O line intensities.