HERSCHEL ORION

Tracing Protostellar Envelope Evolution in Orion with Herschel

Will Fischer (wjfischer@gmail.com), Tom Megeath (HOPS PI), Amy Stutz, Babar Ali, Elise Furlan, Thomas Stanke, Mayra Osorio, and John Tobin

HOPS: Herschel Orion Protostar Survey

- 200 hour Open-Time Key Program
- **Observe the Spitzer-identified Orion protostars with PACS**
- Imaging at 70 and 160 µm of > 300 protostars
- Spectroscopy from 55 to 200 µm of 33 protostars
- Extensive additional data: HST imaging, Spitzer imaging and spectroscopy, APEX sub-millimeter imaging, IRTF near-infrared spectroscopy, other ground-based imaging and spectroscopy
- A complete study of protostars in a single cloud complex

SED and Image Analysis

- SEDs from 2MASS, Spitzer, Herschel, APEX; sample to the right demonstrates dependence of SED on envelope mass (inside 5000 AU)
- **Crucially, Herschel data fill in the peak of the SED**
- Fit with a grid of 3040 models at 10 inclinations (Furlan et al., in prep.)
- Additional constraints on inclination, cavity angle, disk properties, envelope density from HST images (Booker et al., in prep.)

Sample SEDs

Evolutionary Diagrams of the HOPS Sample

Observed Distribution (BLT)

Integrate under SEDs

L_{bol}: Bolometric luminosity

- T_{bol}: Bolometric temperature, the T_{eff} of a blackbody with the same mean frequency as the SED
- Use standard division into Classes by T_{bol} Class 0: $T_{bol} < 70 K$ Class I: 70 K < T_{bol} < 650 K

Bin Menv Distribution 0.2 ction 1.0

100

100

1000

1000

Modeled Distribution (TLM)

- Apply SED modeling to get envelope properties
- L_{tot}: Luminosity corrected for inclination & foreground extinction
- M_{env}: Envelope mass inside 5000 AU, the region probed by IR observations
- Median luminosities (red diamonds) peak at $M_{env} \sim 1 M_{\odot}$
- **Possible explanations for this peak:** 1) Protostars with ~ 1 M_{\odot} envelopes are forming more massive stars
- 2) Low-mass protostars have higher mass infall rates early in their evolution
- The L1641 region of Orion, unlikely to be forming massive stars, shows a similar trend, supporting (2)

- SED and image fitting yield luminosities and envelope masses for >300 Orion protostars, more than half the total in the nearest 500 pc
- **Class 0 lifetime is 0.15 Myr if protostellar lifetime**

- **Direct Bry Probe of Accretion Luminosity**
- IRTF/SpeX data (0.8–2.5 µm, R=2000) obtained for bright

(erg

Flux

is 0.5 Myr

Median luminosity decreases as T_{bol} increases and envelope mass decreases, with substantial

scatter

Accretion luminosities for late Class I objects are typically a small fraction of their total luminosities

Accretion Luminosity (L_{\odot})