

Gravitationally lensed galaxies detected by HerMES

Julie Wardlow¹, Asantha Cooray, Shane Bussmann, Hai Fu, Dominik Riechers, Jae Calanog & the HerMES Collaboration

Strong gravitational lensing can probe distant galaxies to depths and resolutions that would be impossible if not for the lensing amplification. We have used the wide-field coverage of *Herschel* HerMES to efficiently select strongly gravitationally lensed submillimeter galaxies, and obtained follow-up data with multiple facilities to study these galaxies (see Wardlow et al. 2013; Bussmann et al. 2013; Fu et al. 2013).

Candidate selection

- Thanks to the steep bright-end number counts (Fig. 1) strongly lensed galaxies can be simply and reliably identified by selecting bright submm sources (e.g. Blain 1996; Negrello et al. 2010)
- In 95 deg² of HerMES there are 13 candidate lenses with S_{500} >100mJy (Wardlow et al. 2013)

Figure 1: HerMES 500 μ m number counts. Our model predicts that up to ~75% of candidates with S₅₀₀>100mJy are lensed (Wardlow et al. 2013).

Figure 2: Follow-data for some of the lensed SMGs. The greyscale images are typically dominated by foreground lenses; contours are radio or SMA data, which trace the SMGs.

HBoötes02

- HBoötes02 is one of the HerMES lensed SMGs identified by its extreme 500µm flux (S₅₀₀=157±33mJy).
- The SMG (*z*=2.80; CO spectroscopy) is lensed by an edge-on spiral galaxy (*z*=0.41; optical spectroscopy).
- Starburst: The dust emission is extended over ~1kpc in the source plane and has an SED similar to typical *z*~2 SMGs: T_d ~37K, β ~1.5, μL_{IR} ~4x10¹³L₀, μ SFR~7000M₀/yr
- **AGN:** The radio emission is ~10x brighter than expected from starformation and unresolved to ~65pc in the source plane. There is a coincident bright X-ray source with $\mu L_{X(0.5-7keV)}=2.1x10^{45}erg/s$.
- **Differential lensing:** the radio emission is magnified by a factor of μ ~23, but the sub-mm only by a factor of μ ~10, due to the different emission regions in the source-plane.

Figure 3: Keck & HST near-IR images of HBoötes02 with JVLA 7GHz and SMA 870µm contours. The SMG contains star-formation and a radio-loud AGN and is being strongly gravitationally lensed by the edge-on spiral galaxy.

Figure 4: HBoötes02 SED, showing SMG, lens and integrated photometry. Accounting for the differential magnification (small radio symbols) does not account for the radio excess.

References Blain, 1996, MNRAS, 283, 1340 Bussmann et al., arXiv:1309.0835 Fu et al., 2013, Nature, 498, 338 Negrello et al. 2010, Science, 330, 800 Wardlow et al. 2013, ApJ, 762, 59 **Coming soon...** Calanog et al. in prep Wardlow et al. in prep

