Direct constraints on UV attenuation, dustobscured star formation, and dust mass of z=6.5-7.5 galaxies

Daniel Schaerer (Geneva Observatory, CNRS) Fréderic Boone (IRAP, Toulouse) *Other collaborators*: M. Zamojski, M. Dessauges-Zavadsky, J. Staguhn, S. Finkelstein, F. Combes

- Introduction, motivation
- New constraints on z>6 star-forming galaxies
- Conclusions
- → Schaerer et al. 2014, A&A in press; arXiv:1407.5793
- \rightarrow de Barros, Schaerer, Stark, 2014, A&A 563, A81
- → Schaerer & de Barros 2014, in prep

Introduction

Cosmic star formation rate history

→ review of Madau & Dickinson (2014)

Major unknowns:

- contribution of different galaxy populations
- dust-obscured star formation
- attenuation correction

Introduction

Dominguez et al. (2013)

Measurement of dust attenuation

Main methods:

1. Balmer decrement: $H\alpha/H\beta$ ratios measured out to $z\sim2$ (ground-based + HST WFC3 grism)

2. IR/UV ratio

Heinis et al. (2013)

3. UV slope β: only method so far at high redshift (LBGs, LAEs)

Results from IR / Herschel

Mean attenuation as function of redshift

Burgarella et al. (2014)

Results from IR / Herschel

Stellar mass -- dust attrenuation correlation

- «universal » for all galaxy types?
- also valid at high z?

Heinis et al. (2014) Pannella et al. (2014) + many others

Tentative relation for LBGs @ z~6-8 !? Schaerer & de Barros (2010)

Results from IR / Herschel

IRX – beta relation

z~2 DOGs: Penner et al. (2012)

Lensed z~2-3 SFGs: Sklias et al. (2014)

Adequacy of the UV slope method at high-z?

- Empirical correlation of IRX (=IR/UV) versus UV slope β in nearby star-forming galaxies: « Meurer law » (Meurer et al. 1992, Takeuchi et al. 2012)
- Correlation is reproduced by models with:
 - SFR=const, age>100 Myr & solar metallicity \rightarrow Intrinsic slope β_0 =-2.23
 - Calzetti attenuation law

- Assumptions probably invalid for high-z galaxies:
 - Younger populations on average
 - Non-uniform/burtsty SF histories
 - Metallicity < solar
 - → Revised « Meurer law »
 - → Higher UV attenuation for given slope β

de Barros et al. (2014), Castellano et al. (2014 + Poster)

InAdequacy of the UV slope method at high-z: → Higher UV attenuation at high-z?

LBGs at z~3-7:

- Large LBG sample from z~3-6: SFR increased by ~2-3 (de Barros et al. 2014)
- z_{spec}~2.8-3.8 sample (14 objects with known metallicity): SFR higher by factor 2-4 (Castellano et al. 2014)
- SFR density increased by factor ~1.2 4 between z~7 and 3 (Schaerer & de Barros 2014)
- UV attenuation versus z in agreement with extrapolation of IR/UV measurement at z<3 (Burgarella et al. 2014)
- → Next step: direct measurement of IR emission

Schaerer & de Barros (2014)

First hints on dust in « normal » z>6 galaxies with IRAM and ALMA

z=5.2 Herschel Lensing Survey (Combes et al. 2012)

Strongly lensed objects from Herschel Lensing Survey (Sklias et al. 2014) Predicted L_{IR} of ~1400 LBGs from z~3.4 – 7 (Schaerer+ 2013) Lensed galaxies:

- z=4.9 MS1248arc: Livermore+ 2012
- z=6.56 HCM6A: Boone+2007
- z=7 A1703: Schaerer+2014

Blank fields:

- z=6.56 LAE Himiko: Ouchi+2013
- z=6.96 LAE IOK-1: Ota+2014
- z=8.2 GRB090423: Walter+2012 Berger+ 2014
- z=7.5 Finkelstein+2013 object

Our sample

Lensed galaxies:

- z=6.56 HCM6A μ=4.5: Boone+2007
- z=7 LBG in Abell 1703 μ=9, from Bradley+ 2012 Blank fields:
- z=7.5078 LBG from Finkelstein+2013
- \rightarrow New IRAM observations
- z=6.56 LAE Himiko: Ouchi+2013
- z=6.96 LAE IOK-1: Ota+2014
- \rightarrow Recent ALMA observations

Finkelstein+ 2013

A1703-zD1

IRAM and ALMA observation

- MAMBO-2 @30m, 1.2mm:
- WIDEX@PdBI:
- GISMO@30m, 2mm:

- $\sigma = 0.36$ mJy, 4h on-source (Boone+2007) $\sigma_{cont} = 0.09, 0.12, 0.16$ mJy/beam (Walter+2012, Schaerer+2014) $\sigma_{cont} = 0.15$ mJy (Schaerer+2014)
- ALMA band 6, cycle 0 data: $\sigma_{cont}=0.017 0.021 \text{ mJy/beam}$ (Ouchi+2013 Ota+2014)

→ No detection in continuum and [CII] 158micron

→ Limits on IR luminosity and dust mass: assuming T_d=35 K, β =2, including correction for CMB heating

Table 1. Summary of millimeter observations and derived quantities. All luminosity upper limits are 3 σ and are *not* corrected for lensing. For A1703-zD1 and HCM6A the true luminosity limits are therefore lower by the magnification factor μ . The dust temperature T_d indicated here is corrected for the CMB heating, i.e., it corresponds to the temperature dust would have if it were heated by stars alone.

Source	z	ν	rms _{cont}	$\sigma_{ m line}$	$L_{[CII]}$	$L_{\rm IR}(T_d = 25)$	$L_{\rm IR}(T_d = 35)$	$L_{\rm IR}(T_d = 45)$	μ
		[GHz]	[mJy beam ⁻¹]	[mJy beam ⁻¹] ^e	$10^{8} [L_{\odot}]$	$10^{11} [L_{\odot}]$	$10^{11} [L_{\odot}]$	$10^{11} [L_{\odot}]$	
A1703-zD1	6.8 ^{<i>a</i>}	241.500	0.165	1.517	$< 2.55/\mu$	< 3.96/µ	< 7.32/µ	< 14.38/µ	9.
z8-GND-5296	7.508	223.382	0.124	1.824	< 3.56	< 3.84	< 6.65	< 12.67	
$IOK-1^b$	6.96	238.76	0.021	0.215	< 0.38	< 0.53	< 0.96	< 1.87	
HCM6A ^c	6.56	251.40	0.16	0.849	$< 1.36/\mu$	$< 3.47/\mu$	$< 6.49/\mu$	$< 12.81/\mu$	4.5
Himiko ^d	6.595	250.00	0.017	0.167	< 0.28	< 0.36	< 0.67	< 1.30	

^{*a*} Approximate photometric redshift (cf. text). ^{*b*} Observations from Ota et al. (2014). ^{*c*} Observations from Kanekar et al. (2013).

^{*d*} Observations from Ouchi et al. (2013). ^{*e*} In $\Delta v = 50$ km s⁻¹ channels.

IR-mm SED of « normal » z>6 galaxies from IRAM and ALMA

Boone et al. (2007):

- SEDs of Arp220, M82-like objects excluded
- SED compatible with nearby spirals or dwarf galaxies

Ota et al. (2014): SED compatible with nearby irregulars or dwarf galaxies

IRX-beta relation of « normal » z>6 galaxies from IRAM and ALMA

IRX-beta relation compatible with nearby starbursts

Mean attenuation as function of redshift

Burgarella et al. (2014)

UV attenuation compatible with:

- (higher) attenuation from SED fits
- extrapolation of IR/UV results from z<3.5

Schaerer et al. (2014)

Mass – dust attenuation relation

- ≥ 2 objects: less attenuation than expected from relation at lower redshift
- Compatible with *flatter mean relation for z~7 LBGs* (Schaerer & de Barros 2014)

Dust masses of « normal » z>6 galaxies with IRAM and ALMA

Dust masses at z > 6:

- Current upper limits are compatible with normal dust/ stellar mass ratios
- No indication for redshift evolution of M_d/M* from z~0 to 3 and at z~7
- Dust production per SN ~0.15-0.45
 M_☉ (Hirashita+ 2014)

Schaerer al. (2014)

Dust masses of « normal » z>6 galaxies with IRAM and ALMA

Dust masses at z>6:

- Current upper limits are compatible with normal dust/ stellar mass ratios
- No indication for redshift evolution of M_d/M^*

[CII] emission from « normal » z>6 galaxies with IRAM and ALMA

Ota et al. (2014)

- [CII] not detected (so far) in z>6 galaxies
- L([CII]) below local correlation with SFR (de Looze et al. 2012, 2014)
- Explanation for weak [CII] emission debated (Stacey+2010, Vallini+2013, Garcia-Lopez+ 2013, ...)

Implications

Analysis of large LBG sample with SED models allowing for:

- nebular emission
- variable SF histories
- → sSFR rising with redshift
- → Large scatter expected

de Barros et al. (2014)

Redshift

SF galaxies @ z~6.5-7.5: conclusions

- New deep IRAM PdBI 1.2mm observations of two z=7 and 7.5 LBGs
 + 3 Lyman-alpha emitters at z=6.5-7 previously observed (IRAM + ALMA)
- [CII] + dust continuum undetected
 → limits on dust mass, IR luminosity, UV attenuation, dust-obscured SF
- SED compatible with nearby spirals, irregulars or dwarfs; not M82-like
- IRX-beta relation: objects compatible with local relation
- Limits on UV attenuation compatible with UV slope and SED fits
- UV attenuation versus redshift:
 - OK with extrapolation from z<3.5 (Burgarella et al. 2013)
 - Can be higher by factor 2 estimated from UV slope
- *Attenuation stellar mass*: probably flatter at z~7
- *Dust/stellar mass ratio*: universal. No evidence (yet) for difference with z~0-3
- High sSFR~20-90 Gyr⁻¹ confirmed for 1 object

 \rightarrow More deep IR-mm observations needed: ALMA, ...