

## The Evolving ISM of Star Forming Galaxies Over the Last 10 Billion Years



#### Overview

Over the last 10 Billion Years (the majority) of star forming galaxies appear to obey the following (among others) relations :

- 1. SFR M<sub>\*</sub> (Main Sequence) 2.  $\Sigma_{SFR} - \Sigma_{gas}$  (SF law) 3.  $L_{IR} - L_8$
- 4.  $L_{FIR} L_{[CII]}$



They mirror the process of star formation though cosmic time

UNIVERSITY OF

DXFORD





Credit: AstroImagerDia

- [CII] 158µm is one of the strongest ISM cooling lines (T~90K)
- Accounts for 0.1-1% of the  $L_{IR}$
- One of the most powerful spectroscopic tracers of the ionized & neutral components of the ISM
- Tracer of Star Formation Rate (?)





Origin of the deficit:

- AGN contamination  $\rightarrow$  excess  $L_{IR}$  with respect to  $L_{CII}$
- Stronger interstellar radiation fields (U)  $\rightarrow$  increased dust to gas opacity
- $n_H$  densities >  $n_{crit}$ ,  $\rightarrow$  recombination of C+ to C
- Self absorption

#### 20/11/2014

#### UNIVERSITY OF OXFORD

### [CII] at high-z



20/11/2014





- A large fraction high-z ULIRGs behave like local normal galaxies
- Strong evolution of their [CII] emission



### $L_{CII} - L_{IR}$ correlation



- We are building the picture in the two ends of evolution
- Need for intermediate redshift (0.2 < z < 1.0) observations
- 158µm x (1+z) for  $0.2 < z < 1 \sim 200-350$ µm  $\rightarrow$  not accessible from the ground



# The Herschel Satellite



- 8x4x4m
- 4 tonnes on launch
- 3.5m mirror
- 2200 litres of He
- Cooled to 0.3K
- 3 instruments
- 70-700 microns



#### Herschel Space Observatory



#### Far-IR spectra of 0.2<z<0.6 (U)LIRGs

• Follow up with FTS onboard Herschel (C+) and IRAM (CO)



UNIVERSITY OF

Georgios Magdis

Magdis+14



### FTS spectra







## [CII] 157.7 μm (FTS)

#### 20/11/2014



#### Far-IR spectra of 0.2<z<0.6 (U)LIRGs



## CO[1-0] CO[2-1] CO[3-2] (APEX-IRAM)

Magdis+14



### $L_{CII} - L_{IR}$ correlation



- Bridge the gap between local and high-z ULIRGs
- Evolution already at place @z~0.3-0.4

### $L_{CII} - L_{IR}$



The majority of galaxies at all redshifts follow a universal  $\,L_{\rm CII} - L_{\rm IR}$  relation

Local ULIRGs and QSO's appear [CII] deficient.

UNIVERSITY OF



## $L_{CII}/L_{IR} - T_d$





### PDR fitting of [CII],CO, L<sub>IR</sub>



Softer radiation fields



#### Dust to Gas Mass Ratio Approach







 $z\sim 0.3$  ULIRGs,  $\alpha_{\rm CO}\sim 4.5$  (disk-like)





[CII] deficit pronounced for sources with high SFE =SFR/ $M_{H2}$ 

Possible Scenario : High SFE and hard radiation fields due to compressed star formation triggered by mergers.

UNIVERSITY OF







#### Kinematics of z~0.4 ULIRGs

#### $H\alpha$ velocity maps – Oxford-SWIFT, IFU

 $L_{IR} = 1.1 \text{ x } 10^{12} \text{ L}_{\odot}$ 

#### $\rm L_{IR}$ = 8.0 x 10^{11} \rm L\_{\odot}



#### Magdis+14 in prep



#### **Evolution of Gas Fraction**





### Secular Evolution vs Mergers



#### MAJOR MERGERS: Short-lived starbursts

COLD GAS INFLOWS: Long lasting, secular SF



#### 20/11/2014



1. Strong evolution in the star formation activity of ULIRGs, as traced by [CII], CO and Ha kinematics, already by  $z \sim 0.3$ 

2. Properties of the galaxies are "decoupled" from  $L_{\rm IR}$  as soon as z~0.3

Indication that galaxy growth was driven by steady and smooth mode of star formation activity.











#### SPICA



UNIVERSITY OF