



# The birth of a star forming clump in a disk galaxy at z = 2

#### Anita Zanella

with E. Le Floc'h, E. Daddi, F. Bournaud, R. Gobat et al.

CEA Saclay – SAp

Noordwijk, November 14<sup>th</sup>, 2014

### Introduction: observations

clumps

#### **Galaxies** at z ~ 2:

- are gas dominated (Daddi+10, Tacconi+ 10)
- host giant star forming regions = clumps (e.g., Elmegreen+05, 09, Förster-Schreiber+ 06)

#### **Clumps** in z ~ 2 galaxies:

- have total masses ~  $10^{8-9} M_{\odot}$
- have SFR ~ 20 50% of the total SFR of the galaxy (e.g., Genzel+08, Förster-Schreiber+11, Newman+12)



Förster-Schreiber+ 11

 $H_{160}$  (red) H $\alpha$  (green/blue)

### Introduction: simulations

- At high z: large scale gas inflows feed galaxies with gas (Keres+ 09, Dekel+ 09)
- Violent disk instability fragments disks into giant clumps

#### But which is the fate of giant clumps?

- Do they migrate inward and form the **galaxy bulge**? (Dekel+ 11, Bournaud+ 14)
- Are they disrupted by stellar **feedback** in short **timescales**? (Genel+ 12, Murray+ 10) ?



#### Open questions we would like to answer...

- How do clumps form? A newly formed clump has never been observed.
- Which is the clumps **lifetime**?
- Are they relevant for **bulge formation**?
- Which is the role of **feedback**?
- Which is the clumps **star formation efficiency**?

#### ...key ingredients we need

- spatially resolved probe of stellar mass distribution
  → imaging
- 2) spatially resolved probe of star formation distribution
  → UV, spectroscopy (unique for young ages)





Förster-Schreiber+ 11

## Sample

68 **[OIII] emitting** galaxies at  $1 \le z \le 2$ 

#### **Observations:** WFC3 on board HST

Slitless spectroscopy:  $G_{141} (\lambda = 0.8 - 1.2 \mu m)$ Imaging: near-IR (F140W, F105W) UVIS (F606W) Pointed at CL J1449+0856 cluster (Gobat+ 13)



Slitless spectroscopy: 6.4 arcmin<sup>2</sup>

### **Emission line maps**



#### [OIII] emission line maps



#### F140W direct images



#### **Emission line maps**

The case of ID568: **off-nuclear** [OIII], Hβ and [OII] emissions



GALFIT decomposition: diffuse **disk** + off-nuclear **clump** 

Offset significance ~  $8\sigma$ 

## **AGN** hypothesis



### **Continuum emission**

No detection of the clump in the continuum

**Upper limits** on the continuum flux: simulations

 $EW = \frac{F_{line}}{F_{continuum}}$  Lower limit



**Clump location** 

 $EW_{[OIII]} \ge 1700 \text{ Å} >> typical EW_{[OIII]} \text{ of AGNs} (~50-100 \text{ Å})$ 

## An extremely young SF clump

Z ~ 0.4 Z<sub>o</sub>

 $Re \le 0.5 \text{ kpc}$  (unresolved)

Age < 10 Myr

First time robust **age** estimate comparable to **free fall time** 



Zanella et al. 2014, submitted

## Simulations

sSFR clump A = 10x sSFR other clumps

**t = 0** birthtime clump A

t = 12 Myr observed time for the  $M_{\star}$  and SFR map

other clumps are older (100 – 300 Myr)

Initial burst of SF confirmed by observations



#### Newly born clumps behave like ministarbursts



Zanella et al. 2014, submitted

## First insights on the collapse phase

1. Direct evidence of clumps' formation phase



Genzel+ 11

Wuyts+ 13

- 2. Constraints on **clumps formation rate** (~2 clumps/Gyr) and **lifetimes** (~500Myr)
  - $\rightarrow$  clumps survive stellar feedback

ID568

### **Future developments**

Kinematics constraints with AO spectroscopy  $\rightarrow$  pending time request

Detailed analysis of the rest of the sample

- **sSFR** vs age?  $\rightarrow$  constraints on stellar feedback role
- clumps formation rate?  $\rightarrow$  constraints on the clumps' lifetime
- **age** gradient?  $\rightarrow$  constraints on clump migration

Increase of the statistics analyzing other fields

# Summary

#### The birth of a star forming clump...

- We considered a sample of 68 [OIII] emitters at  $1 \le z \le 2$
- We created spatially resolved emission line maps
- The case of ID568: bright off-nuclear [OIII] without a continuum counterpart
- The emission lines are powered by star formation and not AGN
- It is an extremely young star forming clump
- It is the first direct observation of the clumps' formation phase
- Young clumps behave like mini-starbursts (obs. + sim.) Old clumps have enhanced SFE (sim.)
- It supports the scenario in which clumps survive stellar feedback



#### **Backup slides**

### Sample



#### Emission line width = velocity broadening + intrinsic broadening + "morphology broadening"



#### **Classification asymmetry - M<sub>20</sub>**



Cibinel+ 14, in prep.

#### **Galfit decomposition**



### **Continuum upper limits**



#### Physical quantities vs Age



#### Properties of the galaxy and the clump

F<sup>obs</sup> [OIII]  $F_{H\beta}^{obs}$ Radius SFR  $\mathbf{z}$  $log(M_{\star})$ log(Mgas)  $[10^{-17} erg s^{-1} cm^{-1}]$  $[10^{-17} \text{erg s}^{-1} \text{cm}^{-1}]$ [10<sup>-17</sup>erg s<sup>-1</sup>cm<sup>-1</sup>]  $\mathbf{Z}_{\odot}$ [kpc] [M<sub>☉</sub>/yr]  $[log(M_{\odot})]$  $[log(M_{\odot})]$  $8.54^{+1.81}_{-0.80}$  $10.3^{+0.2}_{-0.3}$ Galaxy  $77 \pm 4$  $0.6 \pm 0.2$  $10.4 \pm 0.8$ 

 $0.4 \pm 0.2$ 

 $4.5 \pm 0.3$ 

-

< 9.4

Clump

< 0.5

 $32 \pm 6$ 

< 8.5

F<sup>obs</sup> [OII]

 $6.5 \pm 1.7$ 

 $1.9 \pm 0.6$ 

 $1.5 \pm 0.8$ 

 $0.9 \pm 0.3$ 

Table 1: Properties of the galaxy and the clump.