Molecules at the Reionization Epoch

CO/H2 and OH/CO: from Low Metallicities to High Ionization Rates

> Shmuel Bialy & Amiel Sternberg Tel Aviv University

> > 1409.6724

Intro

Model

Results

 During the reionization epoch stars (pop-II) formed in very low metallicity gas clouds

Summary

- Pop-II stars in the halo down to Z=10^{-4.5} (Caffau+12)
- Metal-poor DLAs up to redshift 5 down to Z=10^{-2.7} (Rafelski+13)

Intro

Model

Results

 During the reionization epoch stars (pop-II) formed in very low metallicity gas clouds

Summary

- Pop-II stars in the halo down to Z=10^{-4.5} (Caffau+12)
- Metal-poor DLAs up to redshift 5 down to Z=10^{-2.7} (Rafelski+13)

What are the chemical properties of dense clouds "GMC-analogues" at low metallicity?

Intro

Model

Results

Summary

What are the chemical properties of dense clouds "GMC-analogues" at low metallicity?

Intro

Model

Results

Summary

What are the chemical properties of dense clouds "GMC-analogues" at low metallicity?

Intro

Model

Results

Summary

What are the chemical properties of dense clouds "GMC-analogues" at low metallicity?

abundances \rightarrow cooling \rightarrow star mass

• pop-III to pop-II transition (e.g., Bromm+03, Omukai+05)

Intro

Model

Results

Summary

What are the chemical properties of dense clouds "GMC-analogues" at low metallicity?

abundances \rightarrow cooling \rightarrow star mass

• pop-III to pop-II transition (e.g., Bromm+03, Omukai+05)

atomic & mol. transitions = probes of star-forming gas

- C II 158 µm, CO rotational ladder (mm wave FIR)
- conversion factor $\alpha_{CO} \rightarrow$ molecular mass

Intro

Model

Results

Summary

What are the chemical properties of dense clouds "GMC-analogues" at low metallicity?

1. May be atomic (H) rather than molecular (H₂)

2. OH-dominated versus CO-dominated gas

3. CO/H₂ variations with Z, ionization rate and density

Model

Intro

Model

Results

- Summary
- Lyman-Werner band blocked (11.2-13.6 eV)
- CR, X-rays
- FUV (E<11.2 eV)

- We examine w/o FUV, here I will show FUV=Off
- CO to OH transition insensitive to FUV
- Weak dependence on T (for 10<T<300 K) we assume 100 K

- We examine w/o FUV, here I will show FUV=Off
- CO to OH transition insensitive to FUV
- Weak dependence on T (for 10<T<300 K) we assume 100 K

The relative abundances $n_i/n_j = f(Z, \zeta/n)$

1D cuts at fixed ζ/n

 $\zeta_{-16}/n_3 = 1$

Thermal Emssion

Full 2D Results

 H_2 formation α nZ • H₂ removal $\alpha \zeta$ •

 H_2 formation α nZ H₂ removal αζ • Transition line: $\zeta_{\text{-16}}/n_3 \approx 10^2 \, \text{Z}$

H_2 regime

- CO/H₂ α Z
- A large fraction of the carbon is always locked in CO

Summary

Intro

Model

Results

Summary

H₂ regime

- CO dominated
- CO/H₂ ∝Z'
- A large fraction of the carbon is in CO

<u>H regime</u>

- OH dominated
- CO/H₂ ∝Z'²
- CO vanishes

"GMC-like (star-forming) clouds for the Pop-II generation may have been OH-dominated and atomic rather than CO-dominated and molecular." Bialy & Sternberg arXiv 1409.6724

Additional slides

Intro

Model

Results

Summary

 $\sum_{jl} k_{ijl}(T) \, n_j \, n_l \, + \, \zeta \, \left| \, \sum_j a^{
m D}_{ij} \, n_j \, + \, x_{
m H_2} \sum_j a^{
m P}_{ij} \, n_j \,
ight|$

FUV=0

 $= n_i \left\{ \sum_{jl} k_{jil}(T) n_l + \zeta \left[\sum_{j} a_{ji}^{\rm D} + x_{\rm H_2} \sum_{j} a_{ji}^{\rm P} \right] \right\} \quad . \quad (2)$

$$\sum_{jl} k_{ijl}(T) x_j x_l + \frac{\zeta}{n} \left[\sum_j a_{ij}^{\rm D} x_j + x_{\rm H_2} \sum_j a_{ij}^{\rm P} x_j \right]$$
$$= x_i \left\{ \sum_{jl} k_{jil}(T) x_l + \frac{\zeta}{n} \left[\sum_j a_{ji}^{\rm D} + x_{\rm H_2} \sum_j a_{ji}^{\rm P} \right] \right\} , \quad (6)$$

FUV=1

$$\begin{split} &\sum_{jl} k_{ijl}(T) \, x_j \, x_l \, + \, \frac{\zeta}{n} \left[\sum_j a_{ij}^{\mathrm{D}} \, x_j \, + \, x_{\mathrm{H}_2} \sum_j a_{ij}^{\mathrm{P}} \, x_j \right] \\ &+ \, \frac{I_{\mathrm{UV}}}{n} \sum_j b_{ij} \, x_j = x_i \left\{ \sum_{jl} k_{jil}(T) \, x_l \right. \\ &+ \left. \frac{\zeta}{n} \left[\sum_j a_{ji}^{\mathrm{D}} \, + \, x_{\mathrm{H}_2} \sum_j a_{ji}^{\mathrm{P}} \right] \, + \, \frac{I_{\mathrm{UV}}}{n} \sum_j b_{ji} \right\} \quad . \end{split}$$

carbon network

Figure 3. Formation-destruction pathways for CH and CO.

Table 2. Photorates for $I_{\rm UV} = 1$

Reaction	Threshold (eV)	Photorate Γ (10 ⁻¹⁰ s ⁻¹)			
		Draine		Diluted 10 ⁵ K	
		thin	LW-blocked	thin	LW-blocked
$OH + \nu \rightarrow O + H$	6.4	3.8	2.8	4.7	2.5
$H_2O + \nu \rightarrow O + H_2$	9.5	0.49	0.28	1.1	0.32
$H_2O + \nu \rightarrow OH + H$	6.0	7.5	5.5	11.7	4.8
$O_2 + \nu \rightarrow O + O$	7.0	7.9	7.0	9.4	5.1
$CH + \nu \rightarrow C + H$	3.4	9.0	8.8	5.5	4.7
$\rm CO$ + $\nu \rightarrow \rm C$ + $\rm O$	11.5^{a}	2.6	0.0	14.2	0.0
$C + \nu \rightarrow C^+ + e$	11.3	3.2	0.0	10.1	0.0
$CH + \nu \rightarrow CH^+ + e$	3.4	7.7	0.97	21.3	1.4
$\mathrm{H^-}+\nu\rightarrow\mathrm{H}+\mathrm{e}$	0.75^{b}	145.2	145.1	23.1	20.7

JV spectrum and our diluted 10^5 K black-body $f_{\rm UV} = 1$ (see text). The light shaded region is the

^{*a*} CO photodissociation occurs via absorption-line predissociation (Visser, van Dishoeck & Black 2009) and 11.5 eV is the lowest photon energy in this multiline process.

^b In computing the photodeatachment rate we adopt the normalized Draine and diluted 10⁵ K photon intensities from 13.6 eV all the way to the H⁻ electron detachment threshold of 0.75 eV.

Dependence on dust-to-gas ratio

Model

Intro

Results

Summary

in in a y

Dependence on Z

Dependence on ζ/n

Figure 8. Fractional abundances $(x_i \equiv n_i/n)$ as a function of ζ/n for Z' = 1, $T_2 = 1$, and $I_{\rm UV}^0/n_3=0$.

Figure 7. Fractional abundances $(x_i \equiv n_i/n)$ as a function of ζ/n for $Z' = 10^{-2}$ and $T_2 = 1$. In the lower right panel $I_{\rm UV}^0/n_3=1$, in all other panels $I_{\rm UV}^0/n_3=0$.

