Dust Formation History with Galaxy Evolution

Tsutomu T. TAKEUCHI

Division of Particle and Astrophysical Science, Nagoya University, Japan

ESTEC, 14 Nov., 2014, the Netherlands

1. Introduction

What are dust grains?

Dust grains are

formed by condensation of heavy elements.

tightly connected to galaxy evolution

There are many important physical quantities affected by dust.

Role of dust for the first star formation

Surface of dust grains

These processes depend strongly on the amount and size distribution of dust grains.

Role of dust for the first star formation

Surface of dust grains

Dust grains drive the star formation.

Spectral energy distribution (SED)

Extinction curve

Wavelength dependence of extinction by dust

Fitzpatrick & Massa (2007)

Dust and matter circulation in a galaxy

Asano (2014) PhD Thesis

Dust supply

Type II Supernovae (SNe II) Broken power-law Biased to large grains Nozawa et al. (2007) Dust mass data Nozawa et al. (2007)

AGB stars

Log-normal distribution Large size grains are produced Winters et al. (1997) Yasuda & Kozasa (2012) Dust mass data Zhukovska et al. (2008)

Dust destruction and grain growth

Shattering and coagulation (driven by ISM turbulence)

Shattering Smaller grains are produced by larger grains

 10^{-27} initial 50 Myr **Grain size distribution** 100 Myr MRN 10⁻²⁸ 10⁻²⁹ 10^{-7} 10^{-5} 10^{-6} 10^{-4} a [cm]

Coagulation Larger grains are produced by smaller grains

Hirashita (2010)

2. Evolution of the Total Dust Amount

Evolution of the total stellar mass, M_* , ISM mass, $M_{\rm ISM}$, metal mass, $M_{\rm Z}$, dust mass, $M_{\rm d}$ in a galaxy

$$\frac{\mathrm{d}M_{*}(t)}{\mathrm{d}t} = \mathrm{SFR}(t) - R(t),$$

$$\frac{\mathrm{d}M_{\mathrm{ISM}}(t)}{\mathrm{d}t} = -\mathrm{SFR}(t) + R(t),$$

$$\frac{\mathrm{d}M_{Z}(t)}{\mathrm{d}t} = -Z(t)\mathrm{SFR}(t) + R_{Z}(t) + Y_{Z}(t),$$

$$\frac{\mathrm{d}M_{d}(t)}{\mathrm{d}t} = -\mathcal{D}(t)\mathrm{SFR}(t) + Y_{d}(t) - \frac{M_{d}}{\tau_{\mathrm{SN}}} + \eta \frac{M_{d}(1-\delta)}{\tau_{\mathrm{acc}}}$$

$$Z(t) \equiv M_{\mathrm{Z}}/M_{\mathrm{ISM}}$$

$$\delta \equiv M_{\mathrm{d}}/M_{Z}$$

$$\mathcal{D} \equiv M_{\mathrm{d}}/M_{\mathrm{ISM}}$$
Asano, TTT, Hirashita, Inoue (2013)

2. Evolution of the Total Dust Amount

Evolution of the total stellar mass, M_* , ISM mass, $M_{\rm ISM}$, metal mass, $M_{\rm Z}$, dust mass, $M_{\rm d}$ in a galaxy

$$\frac{\mathrm{d}M_{*}(t)}{\mathrm{d}t} = \mathrm{SFR}(t) - R(t),$$

$$\frac{\mathrm{d}M_{\mathrm{ISM}}(t)}{\mathrm{d}t} = -\mathrm{SFR}(t) + R(t),$$

$$\frac{\mathrm{d}M_{Z}(t)}{\mathrm{d}t} = -Z(t)\mathrm{SFR}(t) + R_{Z}(t) + Y_{Z}(t),$$

$$\frac{\mathrm{d}M_{\mathrm{d}}(t)}{\mathrm{d}t} = -\mathcal{D}(t)\mathrm{SFR}(t) + Y_{\mathrm{d}}(t) - \frac{M_{\mathrm{d}}}{\tau_{\mathrm{SN}}} + \eta \frac{M_{\mathrm{d}}(1-\delta)}{\tau_{\mathrm{acc}}}$$

- Injection to stars/ejection from stars
- Destruction by SN shocks
- Grain growth in the ISM

2. Evolution of the Total Dust Amount

Evolution of the total stellar mass, M_* , ISM mass, $M_{\rm ISM}$, metal mass, $M_{\rm Z}$, dust mass, $M_{\rm d}$ in a galaxy

$$\frac{\mathrm{d}M_*(t)}{\mathrm{d}t} = \mathrm{SFR}(t) - R(t),$$

$$\frac{\mathrm{d}M_{\mathrm{ISM}}(t)}{\mathrm{d}t} = -\mathrm{SFR}(t) + R(t),$$

$$\frac{\mathrm{d}M_Z(t)}{\mathrm{d}t} = -Z(t)\mathrm{SFR}(t) + R_Z(t) + Y_Z(t),$$

$$\frac{\mathrm{d}M_{\mathrm{d}}(t)}{\mathrm{d}t} = -\mathcal{D}(t)\mathrm{SFR}(t) + Y_{\mathrm{d}}(t) - \frac{M_{\mathrm{d}}}{\tau_{\mathrm{SN}}} + \eta \frac{M_{\mathrm{d}}(1-\delta)}{\tau_{\mathrm{acc}}}$$

Closed-box model is assumed (the infall/outflow changes the star formation timescale but does not change the conclusion in this study).

Star Formation Rate (SFR) and Initial Mass Function (IMF)

Initial Mass Function (IMF) Larson IMF (Larson 1998) $\phi(m) \propto m^{-(\alpha+1.0)} \exp(-\frac{m_{ch}}{m})$ **Normalization:** $\int_{0.1 \text{ M}_{\odot}}^{100 \text{ M}_{\odot}} m\phi(m) dm = 1$

We adopt $\alpha = 1.35$ and $m_{ch} = 0.35 \text{ M}_{\odot}$ in this study.

Star Formation Rate (SFR) and Initial Mass Function (IMF)

Star Formation Rate (SFR) Schmidt law (Schmidt 1959) with index *n* = 1

$$SFR(t) = \frac{M_{ISM}(t)}{\tau_{SF}}$$

This determines the SFH.

Timescales of dust destruction and grain growth

Dust destruction by SN shocks in the ISM

$$\tau_{\rm SN} = \frac{M_{\rm ISM}(t)}{\epsilon m_{\rm swept} \gamma_{\rm SN}(t)}$$

 ε : dust destruction efficiency m_{swept} : ISM mass swept by a SN shock

 γ_{SN} : SN rate (e.g., McKee 1989)

Grain growth by metal accretion

$$\tau_{\text{acc}} \approx 2.0 \times 10^7 \qquad \begin{array}{l} \textbf{a} : \text{mean grain size} \\ \textbf{n}_{\text{H}} : \text{number density of the ISM} \\ \textbf{T} : \text{ISM temperature} \\ \times \quad \left(\frac{\bar{a}}{0.1\mu\text{m}}\right) \left(\frac{n_{\text{H}}}{100 \text{ cm}^{-3}}\right)^{-1} \left(\frac{T}{50 \text{ K}}\right)^{-\frac{1}{2}} \left(\frac{Z}{0.02}\right)^{-1} \text{[yr]} \end{array}$$

Timescales of dust destruction and grain growth

Dust destruction by SN shocks in the ISM

 ε : dust destruction efficiency $\tau_{\rm SN} = \frac{M_{\rm ISM}(t)}{\epsilon m_{\rm swept} \gamma_{\rm SN}(t)} \qquad \begin{array}{l} \text{s. and the function efficiency} \\ m_{\rm swept} : \text{ISM mass swept by a SN} \\ \text{sheads} \end{array}$ shock

 γ_{SN} : SN rate (e.g., McKee 1989)

Grain growth by metal accretion

 $\tau_{\rm acc} \approx 2.0 \times 10^7 \qquad \begin{array}{l} \textbf{a: mean grain size} \\ \textbf{n_{\rm H}: number density of the ISM} \\ \textbf{T: ISM temperature} \\ \times \left(\frac{\bar{a}}{0.1\mu{\rm m}}\right) \left(\frac{n_{\rm H}}{100~{\rm cm^{-3}}}\right)^{-1} \left(\frac{T}{50~{\rm K}}\right)^{-\frac{1}{2}} \left(\frac{Z}{0.02}\right)^{-1} [{\rm yr}] \end{array}$ *a* : mean grain size

Contribution of each physical process to the total dust mass

Contribution of each physical process to the total dust mass

What determines the switching point?

Contribution of each physical process to the total dust mass

What determines the switching point?

Critical metallicity for grain growth

$$Z = \left[\frac{D}{\eta\delta(1-\delta)}\right]^{\frac{1}{2}} \left(\frac{\tau_{\rm acc,0}}{\tau_{\rm SF}}\right)^{\frac{1}{2}}$$
$$\frac{dM_{\rm d}(t)}{dt} = -\mathcal{D}(t) \text{SFR}(t) + Y_{\rm d}(t) + \frac{M_{\rm d}}{\tau_{\rm SN}} + \eta \frac{M_{\rm d}(1-\delta)}{\tau_{\rm acc}}$$

Critical metallicity for grain growth

Evolutionary tracks of the dust-to-gas mass ratio are unified by using Z/Z_{crit} . Metallicity tuned out to be fundamental for dust evolution.

Application to the observed data

Rémy-Ruyer et al. (2014) (cf. Suzanne's talk)

3. Evolution of Dust Grain Size Distribution

Model settings

- Closed-box model (total baryon mass is a constant)
 - Two-phase ISM (WNM and CNM)
 - Schmidt law : SFR(t) = $M_{ISM}(t)/\tau_{SF}$
- Dust formation by SNe II and AGB stars
- Dust reduction through the astration
- Dust destruction by SN shocks in the ISM
- Grain growth in the CNM
- Grain-grain collisions (shattering and coagulation) in the ISM (mass-preserving processes)

 $M_d(a, t) = m(a)f(a, t)da$: dust mass with a grain radius [a, a+da]at a galactic age t

Asano, TTT, Hirashita, Nozawa (2013)

$$\frac{dM_{d}(a,t)}{dt} = -\frac{M_{d}(a,t)}{M_{ISM}(t)} \operatorname{SFR}(t) + Y_{d}(a,t) \qquad \text{Stellar effects} \\
- \frac{M_{\text{swept}}}{M_{ISM}(t)} \gamma_{\text{SN}}(t) \left[M_{d}(a,t) - m(a) \int_{0}^{\infty} \xi(a,a') f(a',t) da \right] \\
+ \eta_{\text{CNM}} \left[dm \frac{\partial [m(a) f_{m}(m,t)]}{\partial t} \right] \\
+ \eta_{\text{WNM}} \left[\frac{dM_{d}(a,t)}{dt} \right]_{\text{shat,WNM}} + \eta_{\text{CNM}} \left[\frac{dM_{d}(a,t)}{dt} \right]_{\text{shat,CNM}} \\
+ \eta_{\text{WNM}} \left[\frac{dM_{d}(a,t)}{dt} \right]_{\text{coag,WNM}} + \eta_{\text{CNM}} \left[\frac{dM_{d}(a,t)}{dt} \right]_{\text{coag,CNM}}$$

$$\frac{\mathrm{d}M_{\mathrm{d}}(a,t)}{\mathrm{d}t} = -\frac{M_{\mathrm{d}}(a,t)}{M_{\mathrm{ISM}}(t)} \operatorname{SFR}(t) + Y_{\mathrm{d}}(a,t)$$

$$-\frac{M_{\mathrm{swept}}}{M_{\mathrm{ISM}}(t)} \gamma_{\mathrm{SN}}(t) \left[M_{\mathrm{d}}(a,t) - m(a) \int_{0}^{\infty} \xi(a,a') f(a',t) \mathrm{d}a \right] \quad \text{Destruction} \text{ by SN shocks}$$

$$+\eta_{\mathrm{CNM}} \left[\mathrm{d}m \frac{\partial [m(a) f_{m}(m,t)]}{\partial t} \right]$$

$$+\eta_{\mathrm{WNM}} \left[\frac{\mathrm{d}M_{\mathrm{d}}(a,t)}{\mathrm{d}t} \right]_{\mathrm{shat,WNM}} + \eta_{\mathrm{CNM}} \left[\frac{\mathrm{d}M_{\mathrm{d}}(a,t)}{\mathrm{d}t} \right]_{\mathrm{shat,CNM}}$$

$$+\eta_{\mathrm{WNM}} \left[\frac{\mathrm{d}M_{\mathrm{d}}(a,t)}{\mathrm{d}t} \right]_{\mathrm{coag,WNM}} + \eta_{\mathrm{CNM}} \left[\frac{\mathrm{d}M_{\mathrm{d}}(a,t)}{\mathrm{d}t} \right]_{\mathrm{coag,CNM}}$$

$$\begin{aligned} \frac{\mathrm{d}M_{\mathrm{d}}(a,t)}{\mathrm{d}t} &= -\frac{M_{\mathrm{d}}(a,t)}{M_{\mathrm{ISM}}(t)} \operatorname{SFR}(t) + Y_{\mathrm{d}}(a,t) \\ &- \frac{M_{\mathrm{swept}}}{M_{\mathrm{ISM}}(t)} \gamma_{\mathrm{SN}}(t) \left[M_{\mathrm{d}}(a,t) - m(a) \int_{0}^{\infty} \xi(a,a') f(a',t) \mathrm{d}a \right] \\ &+ \eta_{\mathrm{CNM}} \left[\mathrm{d}m \frac{\partial [m(a) f_{m}(m,t)]}{\partial t} \right] \\ &+ \eta_{\mathrm{WNM}} \left[\frac{\mathrm{d}M_{\mathrm{d}}(a,t)}{\mathrm{d}t} \right]_{\mathrm{shat,WNM}} + \eta_{\mathrm{CNM}} \left[\frac{\mathrm{d}M_{\mathrm{d}}(a,t)}{\mathrm{d}t} \right]_{\mathrm{shat,CNM}} \\ &+ \eta_{\mathrm{WNM}} \left[\frac{\mathrm{d}M_{\mathrm{d}}(a,t)}{\mathrm{d}t} \right]_{\mathrm{coag,WNM}} + \eta_{\mathrm{CNM}} \left[\frac{\mathrm{d}M_{\mathrm{d}}(a,t)}{\mathrm{d}t} \right]_{\mathrm{coag,CNM}} \end{aligned}$$

4. Evolution of Extinction Curve

Extinction = absorption + scattering by dust grains

Extinction in unit of magnitude at a wavelength: A_{λ}

$$A_{\lambda} = 1.086 \sum_{j} \tau_{j,\lambda}$$

$$\tau_{\lambda, j} = \int_{0}^{\infty} \pi a^{2} Q_{\text{ext}, j}(\lambda, a) Cf_{j}(a) da \quad a: \text{radius of a grain}$$

$$j: \text{grain species}$$

Optical constant: graphite and astronomical silicate (Mg_{1.} Drain

(Mg_{1.} Fe_{0.9} SiO₄) Draine & Lee (1984)

Grain size distribution:

Evolution model of grain size distribution

Asano et al. (2013)

Asano, TTT, Hirashita, Nozawa (2014)

Application to the Milky Way and a distant quasar

This model could reproduce the extinction curves of both the Milky Way and a distant quasar at once.

Nozawa, Asano, Hirashita, TTT (2014)

5. Conclusions

1. Dust amount:

Dust supply alters from stars to grain growth in the ISM when the metallicity exceeds the critical metallicity.

2. Grain size distribution:

The grain size changes from large grains (stars) to small grains (processes in the ISM)

3. Extinction curve:

The Extinction curve transforms from flat (large grains) to steep (small grains).

4. This model reproduced the extinction curves of both the MW and a distant quasar at once.

We provide a coherent and convenient framework to treat the dust properties, which is valid for the whole lifetime of galaxies.

Appendix

Importance of infrared galaxies in the cosmic star formation

Infrared and ultravioletluminous galaxies, which of them are the major player of the star formation history?

 $\Rightarrow At z < 1 (cosmic age < 6.1 Gyr), more than 90% of the star formation is hidden by dust and invisible through the UV window.$

(Takeuchi et al. 2005)

Importance of infrared galaxies in the cosmic star formation

This trend was confirmed by *Herschel* and other facilities. Further, the hidden SF is found to be dominant up to $z \sim 3$ (e.g., Cucciati et al. 2011; Burgarella et al. 2013).

In most of the cosmic history, the hidden SF is a major player.

Parameter setting : Total baryon mass : 10^{10} M_o Star formation timescale : 5 Gyr CNM mass fraction : 0.5 WNM mass fraction : 0.5

Effect of the evolution of the grain size distribution in galaxies

Small grains production by shattering activates grain growth

Extinction curve and dust properties

By fitting:

Grain size distribution $f(a)da \propto a^{-3.5} da$ $a_{\min} = 0.005 \ \mu m$ $a_{\max} = 0.25 \ \mu m$

(Mathis et al., 1977)

Feature 2175Å bump UV slope

Component Carbonaceous Silicate

Extinction curve and dust properties

High-z quasars

Different from nearby galaxies (no bump, flat)

Different origin of dust grains and processing mechanism

Gallerani et al. (2010)

The extinction curve drastically changes through the galaxy evolution!