Herschel Lensing Survey (HLS)

Beyond the Confusion: Enhancing our View of High-z Star Formation via Cluster Lensing

Tim Rawle

ESA Research Fellow ESAC, Madrid

E. Egami (PI; Arizona)

B. Altieri (ESAC) L. Metcalfe (ESAC) I. Valtchanov (ESAC)

A. Blain (Leicester)
J. Bock (JPL/Caltech)
F. Boone (Toulouse)
C. Bridge (Caltech)
S. Bussmann (CfA-Harvard)
A. Cava (Geneva)

S. Chapman (Dalhousie) B. Clement (Lyon) F. Combes (Paris) M. Dessauges (Geneva) D. Dowell (JPL/Caltech) H. Ebeling (Hawaii) A. Edge (Durham) R. Ellis (Caltech) D. Fadda (IPAC/NHSC) O. Ilbert (Marseille) R. Ivison (Edinburgh) M. Jauzac (Durham) T. Jones (UCSB) J.-P. Kneib (Geneva) D. Lutz (MPE) A. Omont (IAP) R. Pello (Toulouse) M. Pereira (Arizona) P. Pérez-González (Madrid) J. Richard (Lyon) G. Rieke (Arizona) G. Rodighiero (Padova) D. Schaerer (Geneva) P. Sklias (Geneva) I. Smail (Durham) G. Smith (Birmingham) M. Swinbank (Durham) G. Walth (Arizona) P. Van der Werf (Leiden) M. Werner (JPL/Caltech) M. Zamojski (Geneva) M. Zemcov (JPL/Caltech)

ESTEC: 11-14 November

Herschel Lensing Survey: Beyond the Confusion

Outline

Limits of Herschel blank fields at high redshift

The power of cluster lensing

The Herschel Lensing Survey (HLS)

Overview of a few example lensed sources

75x magnified source @ z=2.8 behind the Bullet Cluster [Rex+10]

A few interesting examples [Egami+prep, Walth+prep, Clement+prep]

HLS0918: z=5.2 system behind A773 [Combes+12, Rawle+14, Boone+prep]

Summary: Lensing with Herschel (and beyond)

At z > 1.5, blank field surveys only probe the LIRG+ regime

Tim Rawle

At z > 1.5, blank field surveys only probe the LIRG+ regime

You can probe deeper by exploiting gravitational lensing

Individual foreground galaxies can be lenses... BUT

- I) galaxy-galaxy lenses are only discovered serendipitously in large blank-field surveys
- 2) the lens and background source can be hard to disentangle

Abell 383 (z=0.19)

Abell 383 (z=0.19)

Cluster lensing

- allows selection of a large region with increased probability of magnification
- easier to constrain the lens mass via many multiply-imaged systems
- often no direct line-of-sight foreground object

The Herschel Lensing Survey (HLS)

PI: Eiichi Egami (Steward Observatory, Arizona)

- -HLS-deep + GT clusters (~370 hours)
 - 65 well-studied massive galaxy clusters (0.1<z<1.0)
 - Deep 100-500µm PACS+SPIRE imaging (~2.4, 4.7, 9.4, 10.6, 12.0 mJy)... ~5 deg²

- Full IRAC coverage and ~75% MIPS 24µm coverage
- Sample includes all 25 CLASH clusters (HST Treasury Survey with 16 UV-NIR bands)
- Sample includes all 4 HST Frontier Fields (ultra-deep HST DDT program)

-HLS-snapshot (~50 hours)

- 537 clusters (0.1<z<1.0) from the ROSAT, MACS, SPT and CODEX samples
- Near confusion 250-500µm SPIRE imaging (~14, 19, 20 mJy)... ~10 deg²

Tim Rawle

Herschel Lensing Survey: Beyond the Confusion

The power of lensing in the far-infrared

Galaxies in the far-infrared (FIR)

- UV photons heat dust, and are re-emitted at longer λ : FIR probes dust properties
- In galaxies, dominant heat sources are young stellar populations and AGN in the absence of AGN, FIR traces dusty star formation
- Peak of dust component in SPIRE bands at $z\sim 1-5$: FIR colour crudely traces redshift
- Negative K-correction implies there are abundant IR-bright systems at high redshift
- BUT confusion noise sets the fundamental sensitivity of current FIR surveys
- Blank-field surveys only observe U/HyLIRG population at high-z

Gravitational lensing

- Amplifies individual fluxes, while preserving surface density
- Reduces source density by spreading out other background galaxies
- Increases spatial extent (source-plane reconstruction possible with lensing model)

FIR surveys of massive clusters locate high-z lenses efficiently

The Herschel Lensing Survey (HLS)

Selected High Redshift Publications:

- Egami+10, A&A, 518, 12 A&A Special Edition Survey Paper
- Rex+10, A&A, 518, 13 Bullet Cluster
- Combes+12, A&A, 538, 4
 Rawle+14, 2014, ApJ, 783, 59
 A773 (IRAM-30m, PdBI, SMA follow-up)
- Boone+13, A&A, 559, 1 AS1063 (LABOCA-detected, Herschel drop-out)
- Sklias+14, A&A, 561, 149 SFHs of HLS sources
- Dessauges-Zavadsky+ (arXiv:1408.0816) CO gas content → Talk: Friday 9:50

- Cluster sources: Rawle+10, Rawle+12a, Rawle+12b, Rawle+14b →
- SZ effect: Zemcov+10, Prokhorov+12, Sayers+13

Poster 4.06 The effect of a **cluster merger** induced shock on constituent galaxies

Tim Rawle

Tim Rawle

Herschel Lensing Survey: Beyond the Confusion

Tim Rawle

Herschel Lensing Survey: Beyond the Confusion

Tim Rawle

Tim Rawle

Herschel Lensing Survey: Beyond the Confusion

Tim Rawle

Herschel Lensing Survey: Beyond the Confusion

Faint (LIRG; $5 \times 10^{11} L_{\odot}$) lensed source at z=2.8

Tim Rawle

Herschel Lensing Survey: Beyond the Confusion

The beginnings of the full HLS sample

CLJ1226: 3 clustered SMGs?

Tim Rawle

Herschel Lensing Survey: Beyond the Confusion

MACS0257: Quintuply-imaged SMG @ z=4.7

Magnification factor >130 for A+B+C+D \rightarrow L_{IR} < 5x10¹¹ L_{\odot}

A773 (z=0.217)

Herschel Lensing Survey: Beyond the Confusion

Tim Rawle

A773 (z=0.217)

HLS0918 @ z=5.2

		E		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \underline{\text{observed continuum fluxe}}\\ S_{\nu}\\ \underline{\text{mJy}}\\ \hline \\ /\text{SPIRE} & 96 \pm 8\\ /\text{SPIRE} & 179 \pm 13\\ /\text{SPIRE} & 212 \pm 15\\ \text{IA} & 125 \pm 8\\ \text{IA} & 103 \pm 9\\ \text{IA} & 55 \pm 7\\ \text{m/EMIR} & <21\\ \text{m/EMIR} & <21\\ \text{m/EMIR} & <2\\ \end{array}$	$HLSJ0918$ $= \frac{1}{Fir(8-100)}$ $SFR_{FIR} = (1)$ $= \frac{1}{10^{-2}}$	328.6 ± 514223 = (1.6 ± 0.1) ×10 ¹⁴ L ₀ 2.8 ± 0.2) ×10 ⁴ M _☉ yr ⁻¹ , $\int_{\beta} = 1.5$ $\beta = 2.0$ $T_{BB} = 41 \pm 3 \text{ k}$ 100 Observed wavelength	z = 5.2430
	Parameter	unit	Total	
	Relative L_{1mm}		1.00	
	$T_{ m dust}$	K	41 ± 3	
	$L_{\rm FIR(8-1000)}$	$ imes 10^{12} m L_{\odot} \ \mu^{-1}$	160 ± 10	
	\mathbf{SFR}	$ imes 10^{3} \ { m M_{\odot} \ yr^{-1}} \ \mu^{-1}$	28 ± 2	
[Rawle+14]	$L_{\rm FIR(42.5-122.5)}$	$ imes 10^{12} m L_{\odot} \mu^{-1}$	100 ± 6	
- Tim Rawle	Herschel Lensing Survey: Beyor	nd the Confusion	ESTEC: 11-14 November	- Cesa

.....

Atomic and molecular emission

Atomic and molecular emission

Atomic and molecular emission

Tim Rawle

Herschel Lensing Survey: Beyond the Confusion

- HLS0918 is located in the same region as other high-z sources
- low-z galaxies of the same L_{FIR} exhibit an order of magnitude lower $L_{[CII]}$
- attributed to extended [CII] reservoirs

Tim Rawle

- Grey lines represent (solar metallicity) PDR models with varying gas density (n) and FUV field strength (G_0) from Kaufman+99
- Ra, Rb and B similar to local ULIRGs (Ra resembles high-z quasar hosts)
- VB exhibits characteristics of normal local galaxies

- Water emission is excited by strong FIR radiation field, from intense star formation
- Only detected from Ra and Rb
- Ra emission consistent with ULIRG trend $L_{H2O} = L_{FIR}^{\alpha}$ where $\alpha = 1.1 \pm 0.1$ (Omont+13)
- Rb has very strong water emission for given L_{FIR} (α =2.5±0.7)
- Ra (L_{FIR,Ra} $\approx~10^{13}~L_{\odot}$) excites water emission in both components
- Ra and Rb have $\Delta V=250$ km/s and a source plane separation of <1 kpc
- Ra-Rb are two neighbouring components in the nucleus of a massive galaxy

Summary

Gravitational cluster lensing

- -Enormous gain in sensitivity for free
- -Extraordinary spatial resolution at high redshift

Herschel Lensing Survey: Beyond the Confusion

esa

Summary

Gravitational cluster lensing

- -Enormous gain in sensitivity for free
- -Extraordinary spatial resolution at high redshift

x7 magnification turns Herschel into CCAT in Space

Herschel Lensing Survey: Beyond the Confusion

Summary

Gravitational cluster lensing

- -Enormous gain in sensitivity for free
- -Extraordinary spatial resolution at high redshift

Investigating high-z lensed sources is efficient in clusters in FIR

HLS probes faint lensed galaxies (together with HST, e.g. CLASH, HFF)

perfect for ALMA follow-up

Next frontier (ALMA / JWST):

aided by lensing magnification, resolve lensed galaxies into individual star-forming regions (HII regions, molecular clouds)

Tim Rawle