RELATIONSHIP BETWEEN STAR FORMATION RATE AND BLACK HOLE ACCRETION AT z=2: the different contributions in quiescent, normal and starburst galaxies

GIULIA RODIGHIERO (University of Padova)

with

M. Brusa, E. Daddi, M. Negrello, J. Mullaney, I. Delvecchio,D. Lutz, A. Renzini, A. Franceschini, F. Pozzi, C. Gruppioni,V. Strazzullo, A. Cimatti, J. Silverman

The self-regulation of host galaxies and their central BHs is a likely major ingredient for our understanding of galaxy evolution and key to explain the existence of local scaling relations between BH mass and galaxy properties.

As a consequence, determining the relative roles of the various processes that drive the coevolution of BHs and galaxies has emerged as a key goal of current astrophysics research.

- M_{BH}-M_{Bulge} indicates a tight link between BH and galaxy growth.
- Global SF and BH growth follows same trends.
- Not clear why this is the case.
- How is BH and galaxy growth linked?

The emerging observational framework supports the idea that secular processes are responsible for both SFR and SMBH growth in a large majority of galaxies displaying moderate nuclear activity (Cisternas 2011, Kocevski 2012).

Connection to star formation and stellar mass assembly?

- Star-formation rate correlated with galaxy stellar mass.
- SFR per unit stellar mass increases dramatically with redshift.
- Rodighiero+11: ~98% of SF galaxies and 90% of SF takes place in these "main-sequence" (MS) galaxies.

Connection to star formation and stellar mass assembly?

- Star-formation rate correlated with galaxy stellar mass.
- SFR per unit stellar mass increases dramatically with redshift.
- Rodighiero+11: ~98% of SF galaxies and 90% of SF takes place in these "main-sequence" (MS) galaxies.

The role of violent mergers is, however, still considered an important triggering mechanism for BH growth (i.e. AGN activity), in particular in very luminous QSO (Hopkins 2008, Treister 2012).

However, it is now clear that processes other than galaxy mergers, such as gas turbulence or disk instabilities, play an important role in triggering BHAR (Bournaud et al. 2012).

Bournaud et al. (2011)

Key step forward: adoption of X-ray stacking analyses to derive the average BH growth rate of large samples of galaxies (including undetected, low accretion rate BHs).

→ Demonstration that the average BHAR is tightly correlated with both M* and SFR (Mullaney+12b, Chen+13), and mimics the SFR relation of normal SF galaxies (e.g. Elbaz+07, Rodighiero+14).

Average BH growth in SF galaxies: the AGN MS

SFR

Mullaney+12b

Identify a complete sample of SF galaxies. Average over AGN duty cycles using X-ray stacking.

Will miss AGNs in low-SFR galaxies and in starbursting systems

Average SFR vs. M* shows MS trend. On average, M_{bh} growth rate follows the same trend with M* (the so-called AGN main sequence).

Suggests the same underlying physics (gas fractions?) drive SF and BH growth to produce M_{bh} - M_{bulge} correlation

These studies did not discriminate between different types of galaxies, whereas it is known that different levels of SFR may be triggered by different events (mergers vs secular processes for starbursts and normal MS galaxies), which may also trigger different levels of BH growth.

To investigate the relative BHAR in galaxies diplaying different levels of SF properties (i.e. evolutionary stages), we employ X-ray stacking to investigate how the average Lx varies across bin of stellar mass and specific SFR using large statistical M* selected samples.

COSMOS field to avoid small number statistics that prevented previous X-ray stacking studies to separate their samples in terms of sSFR.

Sample selection: above/on/below the MS at 1.4<z<2.5 in the COSMOS field

Sample selection: above/on/below the MS at 1.4<z<2.5 in the COSMOS field

Chandra X-ray stacking analysis to characterize Lx over the whole mass-SFR plane

- Our analysis shows a robust L_x -M_{*} correlation (the hidden AGN MS of M12) for normal star-forming galaxies, confirming its existence also at higher M_{*}. This is a linear relation (in log) with a slope of 1.40(+/-0.09) (steeper than Mullaney+12).
- Starburst galaxies show higher levels of BHAR (x3), with respect to MS galaxies at fixed M_{*}. By contrast, quiescent galaxies have a deficit of an average factor 5.5 in terms of Lx with respect to the MS, suggesting that they belong to an evolutionary phase where the gas fuelling the central engine (and the SFR) is almost exhausted (or the accretion is simply temporarily suppressed).
- Given the number densities and average Lx of starburst, normal star-forming and quiescent galaxies, we argue that the accretion activity during the starburst phase is just 7(+/-1)% of the cosmic integral BHAR at this redshift, while that of quiescent sources is 11(+/-1)%.
- The bulk of the accretion density of the Universe at z=2 is associated with normal star-forming

x/SFR (for normal SF) not mass invariant.

L_x/SFR α M_{*}^{0.4} → M_{bh} α M_{*}^{1.5} (not constant!) but still consistent within the observed scatter of the local M_{bh}/M_{*} relation.

- BHs accrete more mass with respect to their host galaxies at the high mass.
- During the starburst phase, where the SFR is enhanced by a factor of 6 on average, the average X-ray luminosity is also enhanced, but by a smaller amount (by a factor of 3). Possible delay in the BHAR enhancement relative to that of the SFR (e.g. Hopkins+12).

Comparison with hydrodynamical model predictions

These models predict a sudden enhancement of Lx (panel b) and Lx/SFR (panel c) during the merger phase, at odds with our observations.

This result supports the idea that AGN feedback is not as efficient as expected in blowing away gas and suppressing ongoing SF in starburst systems, while a milder tuning of the delay between the declining BHAR and SFR is required (Chen et al. 2013, Hickox et al. 2014).

SUMMARY

- We found a robust BHAR-M_{*} correlation for normal star-forming galaxies.
 - M_{bh}/M_* not constant with mass (scales as $M_*^{1.5}$)
- Starburst galaxies show higher levels of BHAR, with respect to MS galaxies at fixed M_{*}. The accretion activity during the starburst phase is just 7(+/-1)% of the cosmic integral BHAR at this redshift, while that of quiescent sources is 11(+/-1)%.
 - On average, BH growth mimics galaxy growth in MS.
- The bulk of the accretion density of the Universe is associated with normal star-forming.
- Suggestion that it is the same underlying physics (gas fractions?) that drive SF and BH growth, to produce the M_{BH}-M_{bulge} correlation.