Bulge Growth and Quenching since $z = 2.5$
in CANDELS/3D-HST

Philipp Lang,
Stijn Wuyts, Rachel Somerville, Natascha Förster Schreiber, Reinhard Genzel

+ CANDELS/3D-HST - Teams

Star formation across space and time, Nov 13th 2014

Philipp Lang, MPE
Early work on SDSS: link between structure and age

- Connection of **stellar populations** with galaxy **morphology** has been shown using large samples locally (e.g. Kauffmann+2006, Schiminovich+2007, Bell2008, Fang+2013, Cheung+2013, Bluck+2014, Cibinel+2014)

- Tightest correlations with measures of the central mass concentration:
 \[\mu_* \propto M_* / R_e^2 \]

Star formation across space and time, Nov 13th 2014
Link between Structure and Quenching

Existence of a Hubble sequence out to $z \sim 2.5$ with CANDELS

- Disks
- Spheroids

but:
- measurements done so far in rest-frame optical
- samples don’t include fully available CANDELS dataset

What is the connection between bulges and quenching since $z \sim 2.5$?

→ Measurement of B/T, M_{Bulge} needed for a large sample

Underlying physical processes?

- AGN feedback
 (e.g. Hopkins+06, Bournaud+11)

- Morphological quenching
 (e.g. Martig+2009, 2013, Genzel+2014)

- Halo mass quenching
 (e.g. Dekel+03, Kereš+05)
CANDELS
(Cosmic Assembly Near Infrared Deep Extragalactic Legacy Survey)

HST imaging in 5 fields (800arcmin\(^2\))

Imaging at 0.18” resolution

HST/ACS \(V_{606}, I_{814} \) (+ \(B_{435}, V_{775}, z_{850} \))
HST/WFC3 \(Y_{105}, J_{125}, H_{160} \)

\[\rightarrow \text{SFR}_{\text{UV+IR}}, M_\star \]

\[\text{Koekemoer+2011; Grogin+2011; van Dokkum+ 2011; Brammer+2012} \]

Star formation across space and time, Nov 13\(^{th}\) 2014
Clumpy SFGs

Wuyts et al. 2012

Complete sample of ~ 7000 massive (M > 10^{10} M_\odot) galaxies at 0.5 < z < 2.5

Resolved SED modeling to recover mass distributions

2D Modeling

Sersic → N

Bulge + Disk → B/T
Higher B/T for SFGs compared to QGs

Increase of B/T along the MS up to 40%–50% \rightarrow Significant bulge growth prior to quenching

No redshift evolution

P. Lang et al. 2014
Results on Galaxy Structure

Star formation across space and time, Nov 13th 2014

Philipp Lang

P. Lang et al. 2014
Star formation across space and time, Nov 13th 2014

Philipp Lang

P. Lang et al. 2014
Results on Galaxy Structure

~ 600,000 Galaxies in SDSS

Star formation across space and time, Nov 13th 2014

Philipp Lang

“Bulge mass is king”

Bluck et al. 2014

- Rooted in Bolshoi DM simulation (Klypin+2008)
- Built-in recipes for gas-cooling, star formation, SN-feedback, merging, disk instabilities, black hole accretion, AGN feedback (Quasar + radio mode)

→ Good qualitative agreement with observations

P. Lang et al. 2014

- Rooted in Bolshoi DM simulation (Klypin+2008)
- Built-in recipes for gas-cooling, star formation, SN-feedback, merging, disk instabilities, black hole accretion, AGN feedback (Quasar + radio mode)

Bulge serves as closest observable proxy for the supermassive BH

P. Lang et al. 2014
Hints on underlying mechanisms at $z \sim 2.5$

Signatures of broad nuclear outflows

Signatures of morphological quenching

$Q = \frac{\sigma k}{\pi G \Sigma}$

Genzel+ 2014b, Förster Schreiber+2014b

Star formation across space and time, Nov 13th 2014

Philipp Lang
Hints on underlying mechanisms at $z \sim 2.5$

Signatures of morphological quenching

$$Q = \frac{\sigma \kappa}{\pi G \Sigma}$$

Genzel+ 2014a
Summary

- Bulge growth along the MS prior or during quenching
 - Most massive SFGs have B/T up to 40–50%

- M_{Bulge} correlates best with quiescence
 (See Bluck et al. 2014 for SDSS equivalent)

- Qualitative agreement with predictions from SAM
 - $F_{\text{quench}} - M_{\text{Bulge}}$ correlation consistent with AGN feedback, where M_{Bulge} is a proxy for M_{BH}
 - But: room for additional quenching processes