Bulge Growth and Quenching since z = 2.5 in CANDELS/3D-HST

Philipp Lang,

Stijn Wuyts, Rachel Somerville, Natascha Förster Schreiber, Reinhard Genzel

+ CANDELS/3D-HST - Teams

Star formation across space and time, Nov 13th 2014

Philipp Lang, MPE

Link between Structure and Quenching

Early work on SDSS: link between structure and age

- Connection of **stellar populations** with galaxy **morphology** has been shown using large samples locally (e.g. Kauffmann+2006, Schiminovich+2007, Bell2008, Fang+2013, Cheung+2013, Bluck+2014, Cibinel+2014)
- Tightest correlations with measures of the central mass concentration: $\mu_{*(1kpc)}$, B/T, n_{Sersic}

Link between Structure and Quenching

Existence of a Hubble sequence out to $z \sim 2.5$ **with CANDELS**

<u>but</u>: • measurements done so far in rest-frame optical
• samples don't include fully available CANDELS dataset

See also: Bell+2004, Weiner+2005, Koo+2005, Franx+2008, Kriek+2009, Bell+2012, Wang+2012, Lee+2013, Cheung+2012, Bruce+2014

Link between Structure and Quenching

Underlying physical processes ?

- AGN feedback
 (e.g. Hopkins+06, Bournaud+11)
- Morphological quenching (e.g. Martig+2009;2013, Genzel+2014)
- Halo mass quenching (e.g. Dekel+03, Kereš+05)

What is the connection between bulges and quenching since $z \sim 2.5$?

 \rightarrow Measurement of B/T, M_{Bulge} needed for a large sample

The HST Dataset

CANDELS

(Cosmic Assembly Near Infrared Deep Extragalactic Legacy Survey)

HST imaging in 5 fields (800arcmin²)

Imaging at 0.18" resolution

HST/ACS V_{606} , I_{814} (+ B_{435} , V_{775} , z_{850}) HST/WFC3 Y_{105} , J_{125} , H_{160}

+ 3D - HST

G141/G800 grism - redshifts

+ multi-wavelength ancillary data (UV – FIR)

 \rightarrow SFR_{UV+IR}, M_{*}

Koekemoer+2011; Grogin+2011; van Dokkum+ 2011; Brammer+2012

Star formation across space and time, Nov 13th 2014

Clumpy SFGs

Wuyts et al. 2012

- Higher B/T for SFGs compared to QGs
- Increase of B/T along the MS up to 40%-50% → Significant bulge growth prior to quenching
- No redshift evolution

P. Lang et al. 2014

Star formation across space and time, Nov 13th 2014

P. Lang et al. 2014

Star formation across space and time, Nov 13th 2014

P. Lang et al. 2014

Star formation across space and time, Nov 13th 2014

~ 600,000 Galaxies in SDSS

Star formation across space and time, Nov 13th 2014

Observations vs. SAM

Predictions from SAM

(Somerville et al. 2008,2012 + <u>Porter et al. 2014)</u>

- Rooted in Bolshoi DM simulation (Klypin+2008)
- Built-in recipes for gas-cooling, star formation, SNfeedback, merging, disk instabilities, black hole accretion,

AGN feedback (Quasar + radio mode)

→ Good qualitative agreement with observations

P. Lang et al. 2014

Star formation across space and time, Nov 13th 2014

Observations vs. SAM

Predictions from SAM

(Somerville et al. 2008,2012 + <u>Porter et al. 2014)</u>

- Rooted in Bolshoi DM simulation (Klypin+2008)
- Built-in recipes for gas-cooling, star formation, SNfeedback, merging, disk instabilities, black hole accretion,

AGN feedback (Quasar + radio mode)

Bulge serves as closest observable proxy for the supermassive BH

P. Lang et al. 2014

Hints on underlying mechanisms at z ~ 2.5

Signatures of broad nuclear outflows

Genzel+ 2014b, Förster Schreiber+2014b

Genzel+ 2014a

Hints on underlying mechanisms at z ~ 2.5

Signatures of morphological quenching

Genzel+ 2014a

Bulge growth along the MS prior or during quenching
 ➢ most massive SFGs have B/T up to 40−50%

• M_{Bulge} correlates best with quiescence (See Bluck et al. 2014 for SDSS equivalent)

- Qualitative agreement with predictions from SAM
 - ▶ F_{quench} M_{Bulge} correlation consistent with AGN feedback, where M_{Bulge} is a proxy for M_{BH}
 - but: room for additional quenching processes