High-z Compaction to "Blue" Nuggets and Quenching to Red Nuggets

Avishai Dekel The Hebrew University of Jerusalem

November 2014

Barro+ 2013-14; Dekel & Burkert 2014; Zolotov+ 2014

Red Nugget

Red Nuggets

$z\sim 2$ M~10¹¹M_{\odot} R_e~1 kpc low-SFR

Van Dokkum, Franx, Kriek, Bouwens, Labbe+ 08,10,14, Damjanov+09, Newman+10, Damjanov+11, Whitaker+12, Bruce+12,

...

Wet Compaction

Dekel & Burkert 2013

Compact stellar spheroid \rightarrow dissipative "wet" inflow to a "blue nugget"

Inflow is "wet" if inflow > SFR

In violent disk instability (VDI): torques drive AM out and mass in

Wetness parameter

$$w \equiv \frac{\text{inflow}}{\text{SFR}} \approx \varepsilon_{\text{sfr}}^{-1} f_{\text{cold}}^2 > 1$$

$$\varepsilon_{\rm sfr} \leq 0.02$$
 $f_{\rm cold} \geq 0.2$

Expect compact nuggets: - at high z, where f_{gas} is high - for low spin λ , where initial R_{gas} is low

Cosmological Simulations

Run by Ceverino Code: AMR ART (Kravtsov, Klypin) 3x30 galaxies zoom-in Max resolution 25 pc SN and radiative feedback

Collaborators: Mandelker, Danovich, Tweed, Zolotov, DeGraf, Inoue Krumholz+, Burkert+, Bournaud+, Primack+, Faber+, Genzel+

Wet Origin of Bulge in Simulations

Zolotov, Dekel, Mandelker, Tweed, DeGraf, Ceverino, Primack 2014

Most of the bulge stars formed in the bulge \rightarrow wet inflow

Observations: Blue Nuggets -> Red Nuggets

Barro+ 13 CANDELS z=1-3

Compaction and quenching

Zolotov+14 ART cosmological simulations, res. 25pc, rad fdbk, no AGN

Compaction and quenching

dense gas core -> dense stellar core

gas depletion from core, gas ring may form, -> inside-out quenching

> stellar core remains dense from BN to RN

Blue Nugget - Red Nugget naked red nugget

10 z=1.3 z=3.5 z=3.: $\log(\Sigma)[M_{\odot} \, \mathrm{pc}^{-2}]$ -6 -2 0 6 8 10 -8 -6 10-10 -8 -6 -4 -2 0 2 4 6 8 10 -8 -6 -4 -2 0 2 4 6 8 10

a stellar envelope may gradually grow by dry mergers red nugget + envelope = elliptical

Inside-Out Quenching: Slower Quenching in the Outer Disk

Inside-Out Quenching

Tacchella+ 2014

profiles of sSFR (=SFR/M_{star}) at z~2 galaxies

Stellar Component at z=2.3, edge-on

Ceverino+ 2014

"line width" evolution in simulated galaxies

What is the Trigger of wet Compaction?

- VDI-driven inflow (Dekel, Burkert 14)
- Mergers (major, minor) (Barnes, Hernquist 91; Hopkins+ 06)
- Tidal compression (Dekel+03; Renaud+14)
- Counter-rotating streams (Danovich+14)
- Return of recycled low-AM gas (Elmegreen+ 14)

Gas streams + mergers along the cosmic web

AMR RAMSES Teyssier, AD box 300 kpc res 50 pc z = 5 to 2.5

Hi-z galaxies are fed by intense streams, including minor and major mergers

How do the streams join the disk?

A messy interface region: breakup due to shocks, hydro and thermal instabilities, collisions between streams and clumps, heating

An Extended Tilted Ring about the Disk

Violent disk instability (VDI) and mergers (mostly minor) work in concert

VDI deviates from linear Toomre instability Q=2-5 -> nonlinear instability stimulated by in-streams with minor mergers

Violent Disk Instability (VDI) at High z

Ceverino+ ART-AMR cosmological simulations at 25pc resolution

highly perturbed, clumpy rotating disk: $H/R \sim \sigma/V \sim f_{cold} \sim 0.2$

What is the Trigger of wet Compaction?

- VDI-driven inflow (Dekel, Burkert 14)
- Mergers (major, minor) (Barnes, Hernquist 91; Hopkins+ 06)
- Tidal compression (Dekel+03; Renaud+14)
- Counter-rotating streams (Danovich+14)
- Return of recycled low-AM gas (Elmegreen+ 14)

VDI-Driven Inflow: Gas + Clump Migration

Wet Inflow when Gas Disk has Low Spin

Simulations (Zolotov+14) confirm model predictions (Dekel, Burkert 14)

Counter-rotating Streams

Counter-rotation -> Compaction

The Quenching Mechanism

Wet compaction: inflow > SFR+outflow

High SFR and no gas supply to the center: inflow \langle SFR+outflow \rightarrow quenching attempt

- disk has shrunk \rightarrow no immediate gas supply to center
- massive bulge suppresses VDI-driven inflow (morphological quen.)
- AGN outflow

Long-term quenching? Hot Halo

Diffuse SFG -> "Blue" Nuggets -> Red Nuggets

Hesitatnt vs. Decisive Quenching

low mass, low z

high mass, high z

Cold Streams in Big Galaxies at High z 1014 all hot cold filaments $\begin{array}{c} \textbf{M}_{\text{vir}} \\ [\textbf{M}_{\circ}] \end{array}$ in hot medium 1012 M_{shock}~M* M_{shock}>>M* M_{shock} all cold 1010 M* Dekel & 3 0 1 4 5 2 Birnboim 06 redshift z

Two Quenching Mechanisms: Bulge & Halo

Compact gaseous bulge -> gas removal by high SFR, outflow, AGN, Q-quenching

In halos > 10¹² M_☉ -> long-term shutdown of gas supply by virial shock heating

Compact bulge and halo quenching

But each can quench by itself

The Quenching Mechanism

Wet compaction: inflow > SFR+outflow

High SFR and no gas supply to the center: inflow \langle SFR+outflow \rightarrow quenching attempt

- disk has shrunk \rightarrow no immediate gas supply
- massive bulge suppresses VDI-driven inflow
- AGN outflow

If halo is massive (hot) \rightarrow starvation of gas supply \rightarrow long-term quenching

If halo is less massive \rightarrow gas supply to a new disk \rightarrow new compaction and SFR ... until the halo is massive (hot)

Role of AGN Feedback in Quenching?

Compaction and quenching

Zolotov+ 14 ART cosmological simulations, res. 25pc, rad fdbk, no AGN

Gradients Across the Main Sequence

Genzel+ 2014 z=0-2.5

 $t_{dep} = M_{gas} / SFR$

 $f_{gs} = M_{gas} / M_{stars}$

Conclusions

High-z massive galaxies are fed by cosmic-web streams with mergers: they are gas-rich disks undergoing violent disk instability (VDI)

A characteristic sequence of events in most galaxies:

- Wet compaction by streams with mergers and VDI to compact SFGs ("blue" nuggets): rotating flattened spheroids with high dispersion, above the main-sequence, short depletion time, high gas fraction
- High SFR+AGN, outflows, massive self-gravitating bulge → fast quenching inside-out to compact spheroids (red nuggets) then star-forming gas rings and stellar envelopes (ellipticals)
- Long-term quenching by hot massive halo
- Quenching downsizing: massive galaxies quench earlier, efficiently, at higher central densities less massive galaxies : hesitant quenching till halo shutdown

The High-z "Hubble" Sequence

