Dust, Star Formation and The ISM in the Outskirts of Galaxies

Matthew Smith Star Formation Through Space and Time

Matthew.Smith@astro.cf.ac.uk

Herschel Legacy Projects

- Two new EU funded (FP7) projects to provide legacy data for the community (i.e., radiative transfer modelling,
- HELP Herschel Extragalactic Legacy Project
 - Taking data from many large Herschel surveys (HerMES, H-ATLAS, GOODS etc...)
 - HELP will assemble the largest coherent database of galaxies in the distant Universe

(part of my work is funded through HELP)

- DustPedia
 - Study in detail 3045 local-galaxies.

No logos for either yet!

Extended Dust

- While reading Herschel proposals from my thesis many aimed to find cold dust in outskirts of galaxies.
- 850µm (e.g. Scuba) from ground struggles to measure local galaxies
- IRAS/ISO/Spitzer not enough resolution and only hot dust
- Virgo cluster survey wanted to find Inter-Cluster Dust
- Dust could be driven out or formed in the outer disk.
- Has been detected by quasar absorption (Menard et al. 2010) see next slides.
- Not been possible to detect emission before as dust is cold (long wavelengths) and very low surface brightness.

What About Other Phases?

 HI disks are often found to be far more extended than optical

M83 HI+UV+Optical composite by Angel Lopez-Sanchez

Extended UV Disks

- 10 30% of galaxies contain extended UV disks.
- Normal spirals though do not have a cut-off radius

Images from talk of David Thilker. For more information see Thilker et al. 2007

Possibility of Dust

more info see Fritz et al. 2012 and other HELGA papers

Menard et al. 2010

- uses SDSS
- $\sim 85,000$ quasars at z > 1
- Correlated with 24 million galaxies at z~0.3
- Find reddening and magnification
- Half of dust is outside galaxies
- Shallow gradient

ISM on galaxy scales

- Galaxies known to have HI streams in galaxies
- Cluster galaxies are HI deficient (ram-pressure stripping, thermal evaporation, starvation strangulation)

 Dust been seen to also be affected Cortese 2010a/b

Environment

Dust Disks:

 Know dust is affected along with gas (Cortese et al. 2010)

Early Type Galaxies:

In Virgo • 53% S0 HRS ETG Paper: Smith et al. (2012)

- 29% E
- Outside Virgo
 - 89% SO
 - 33% E
- Other than SOs not enough objects to be statistically significant (more objects to come)

Extended Dust (2)

- Potential Questions?
 - How far can we detect dust emission
 - What are the properties of the dust at these wavelengths
 - How does the dust compare to other galaxy tracers?
 - Extreme environment for SF

Herschel Reference Survey

Largest Targeted Survey of galaxies with Herschel

- Statistically complete sample of 322 galaxies
- PI Steve Eales
- Volume Limited 15 25 Mpc
- Very accurate Morphologies
- K-band selected
 - Avoid dust extinction
 - Good measure of stellar mass
 - Late-type $K_{stot} \le 12$
 - Early-types $K_{stot} \le 8.7$
- OT2 PACS program
- Use custom pipeline SPIRE pipeline BriGAdE

HeViCS

- PI Jon Davies
- Otherwise known as DAVIES
- 8 parallel scans
- 100, 160, 250, 350 and 500µm
- 80 sq. deg
- Very deep compared to survey like H-ATLAS
- Noise ~ 0.3 × confusion for SPIRE

Stacked Radial Profiles HRS object Criteria:

- Late-type galaxies
- Indentified as detection
- Extended Source
- No other bright contaminating object
- No heavy cirrus contamination

 \cdot Inclination < 60°

Smith et al. 2012

Stacked Radial Profiles (2)

Stacked Radial Profiles (2)

Median R25 corresponds to 10.3 kpc

Can other Surveys do better?

Best-Fit Model 500µm

SED fitting

- SED fitting PACS + SPIRE data:
 - PACS data only received recently
 - Match PSFs and pixel sizes to 500µm (can't just use Gaussians)
 - PACS data particularly dominated by beam + background issues so limit to 0.5R₂₅
 - Use a 1 component modified blackbody, most SPIRE only so cant be more complicated

Is a fixed dust emissivity index justified?

Temperature Results

Stacked Radial Profiles (3)

- Fraction of dust emission between 1-2 R₂₅ is 4.2, 5.6 and 7.6% for the 250, 350 and 500µm band. (un-beam corrected)
- If integrate the dust mass profile from $R_{25} \rightarrow \infty$ find that 4% of dust mass
- Rough agreement with 15kpc Menard value but I need to redo this.

Other Info Bands:

- Stars
 - The Spitzer Survey of Stellar Structure (S⁴G)
 - 2 and 3.6µm IRAC imaging
 - 46 of the 48 large HRS objects
- Star Formation (Obscured and Un-obscured)
 - Obscured MIPS 24µm
 - 28 Galaxies of the large HRS sample
 - Obscured WISE 22µm
 - Entire Sample
 - GALEX NUV
 - Only NUV data deep enough as FUV channel failed
 - 44 Galaxies of the large HRS sample
- Gas
 - HI (see slide)
 - CO (see slide)

Stellar Profile

Star Formation Rate

NUV

MIPS 24µm

SFR

- Method of Leroy et al. (2008)
- Only 29 galaxies have usable MIPS 24µm

So we also do the same with WISE 22µm (similar resolution to SPIRE and use the same methods

Star Formation Rate

Method that of Leroy et al. (2008)

Molecular Gas

- Paper by Schruba et al. (2011)
- Use the HERACLES survey
 - Deep CO (J=2-1) of nearby galaxies
 - Targets THINGS/SINGS galaxies
- Cool stacking method:

Atomic/Total Gas

Bigiel & Blitz 2012

The Gradients:

- Provisional Numbers
- Simulations finished yesterday for other bands
- Repeating by smoothing the high-resolution data to SPIRE resolution and use same procedure

	Gradient	Error
	$(\text{dex } \text{R}_{25}^{-1})$	
Stellar	-1.91	0.02
SFR	-2.27	0.03
СО	-2.17	?
$HI + H_2$	-0.71	?
Dust	-1.63	0.01

The Gradients (2)

Interpretation

- We don't really know yet...
- Dust sources are thought to be either from AGB stars or from Supernova
- Potential Solutions
 - Radial movement of dust radiation pressure?
 - Star-formation history?
 - Grain–growth in the ISM?

Grain-growth in the ISM

Conclusion

- Herschel is enabling us to constrain the mass, temperature, composition, origin and extent of dust in galaxies
- Dust seems to keep on going (just like all the other phases we've heard about).
- Gradient of dust seems more extended than stars and star-formation.

THANK YOU FOR LISTENING