dense ISM in ULIRG mergers : <u>Arp 220</u> (and NGC 6240)

Cycle 0 ALMA --

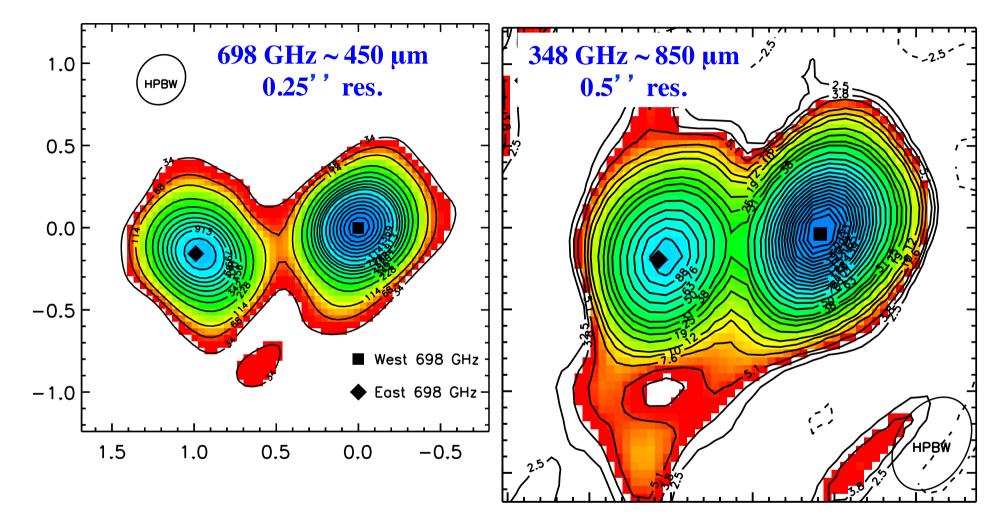
Band 7 (0.5") : HCN (4-3) , CS (7-6) , <u>H26α</u> Band 9 (0.25") : HCN (8-7)

Cycle 1 → Band 7 w/ 0.2"

w/K. Sheth, Manohar, Koda, Walter, Thompson, Barnes, Hernquist, Genzel, Robertson, van der Werf, Hayward, Narayanan, Brown, Tacconi, Fomalont, Sanders, Davies ApJ submitted

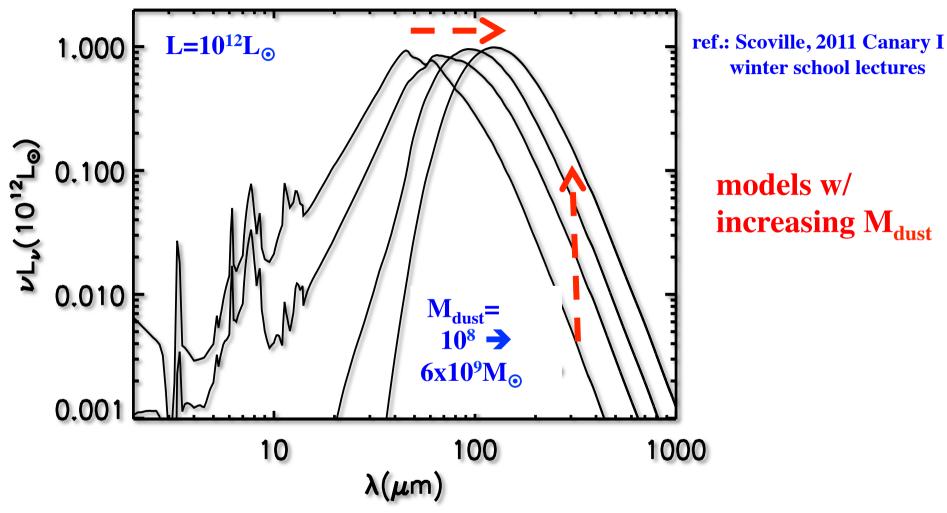
mass estimates – dust-based & dynamical submm recomb lines – distinguishing SB & AGN modeling of disks

Arp 220 @ 77 Mpc 2μm $L_{IR} = 2.5 \times 10^{12} L_{\odot}$


East

West

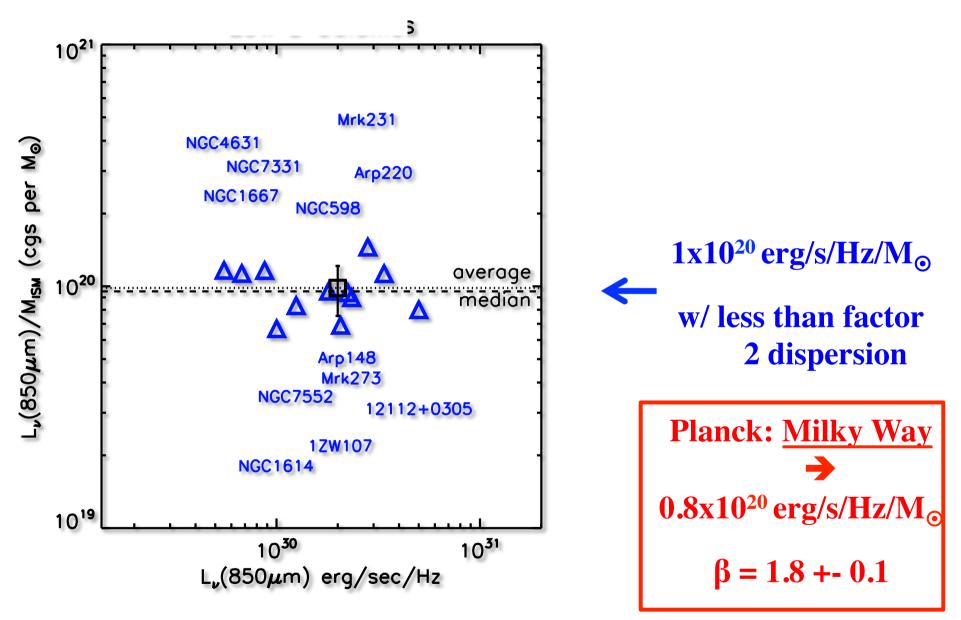
 $A_V \sim 2000$ mag towards nuclei !!



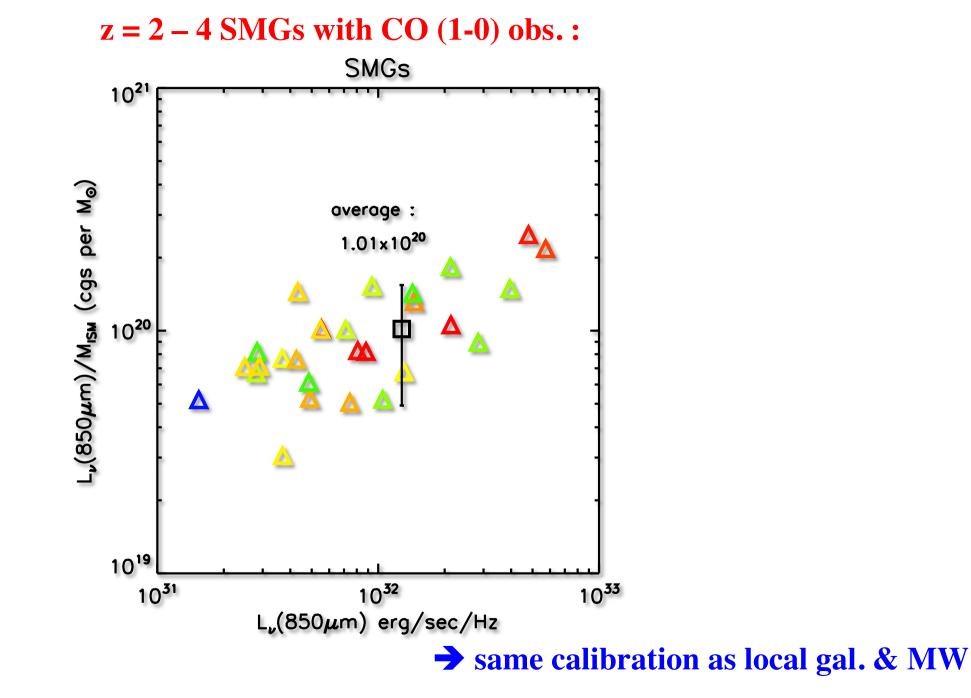
Arp 220 dust continuum

dust continuum →ISM mass

centrally heated dust cloud : emitted SED as function of dust mass


• peak shifts to longer λ for increased τ (or dust mass)

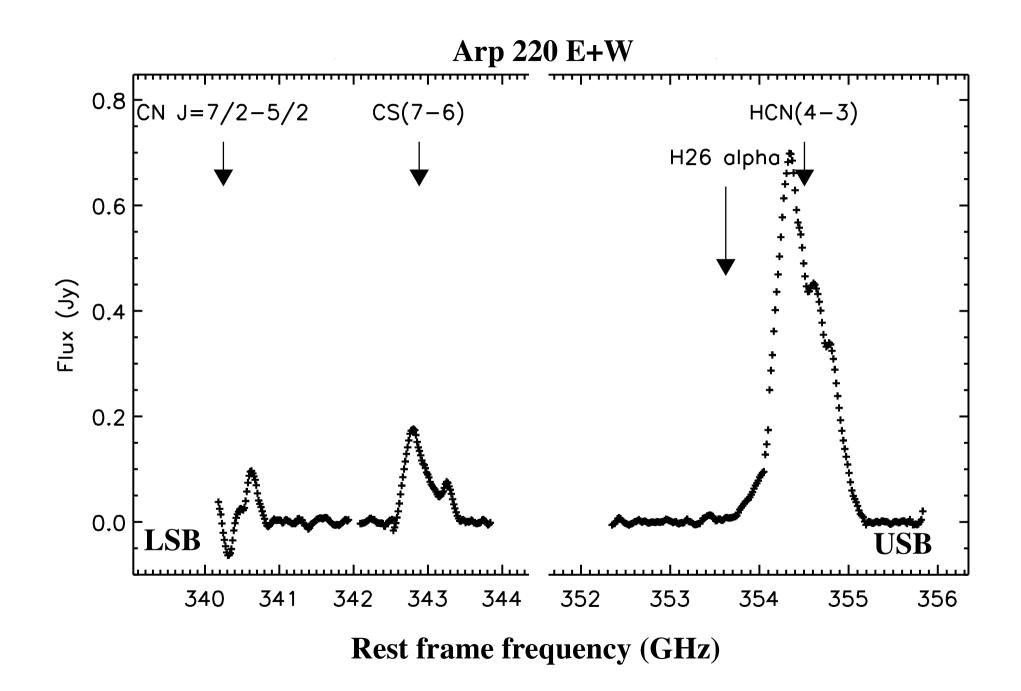
• flux on long λ tail scales linearly with M_{dust}

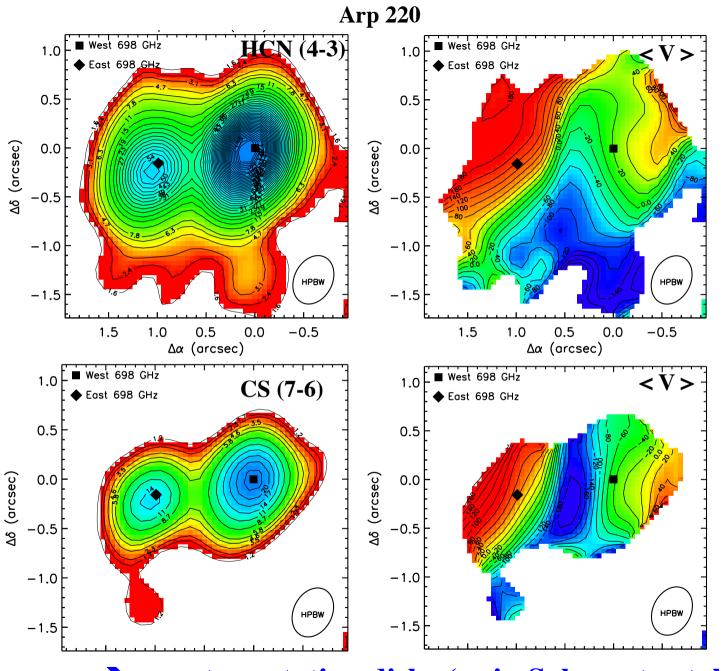

R-J tail is optically thin, therefore

 $F_{RJ} = \varkappa_{v} T_{dust} v^{2} M_{dust} / (4\pi d^{2})$ $T_{dust} = 20-25 \text{ K in Gal. SF} \Rightarrow \text{ little dep. on } T_{dust}$ if M _{ISM} / M _{dust} and \varkappa_{v} are const., $F_{RJ} \Rightarrow M_{ISM}$ calibrate : $L_{v} / M_{ISM} = \langle \varkappa_{v} T_{d} M_{ISM} / M_{dust} \rangle$ local galaxies, Milky Way (Planck) & SMGs

local gal. w/ total 850µm fluxes & ISM masses

850µm from Dale '05, Clements '09, Dunne & Eales '09)

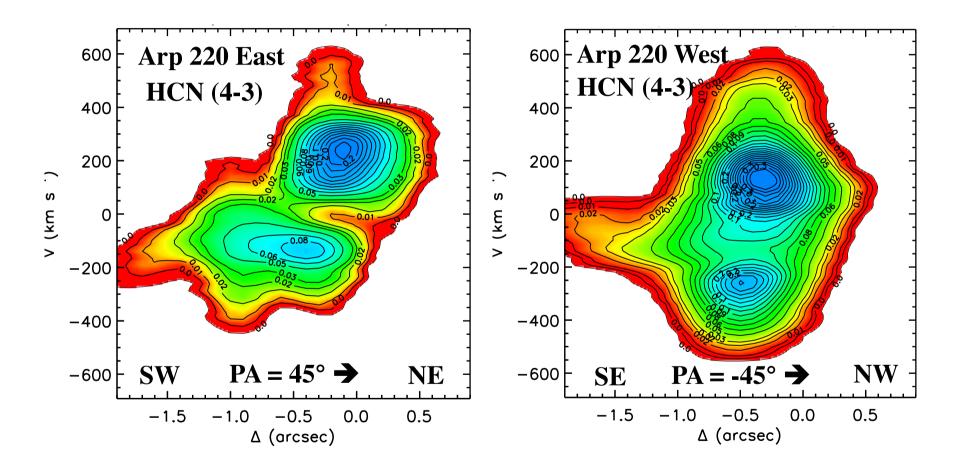

ISM masses from RJ dust continuum : Scoville etal 2014, and Santini etal 2014 + friday talk


$$M_{ISM} = \frac{0.87 \text{ S}_{v}(\text{mJy})d_{Gpc}^{2}}{(1+z)^{4.8}T_{25}v_{350}^{3.8}\Gamma_{RJ}}10^{10}M_{sun}$$

ISM Masses from Dust Continuum

Source	$ u_{obs}$	Flux	T_d ^a	П	Mass
	GHz	mJy	Κ		$10^9 { m M}_{\odot}$
Arp 220 total Arp 220 East Arp 220 West	$347.6 \\ 347.6 \\ 347.6$	$490 \\ 161 \\ 342$	$100 \\ 100 \\ 100$	0.917	$5.97 \\ 1.96 \\ 4.16$
NGC 6240	693.5	126	25		1.64

lines ...



→ counter-rotating disks (as in Sakamoto etal '98)

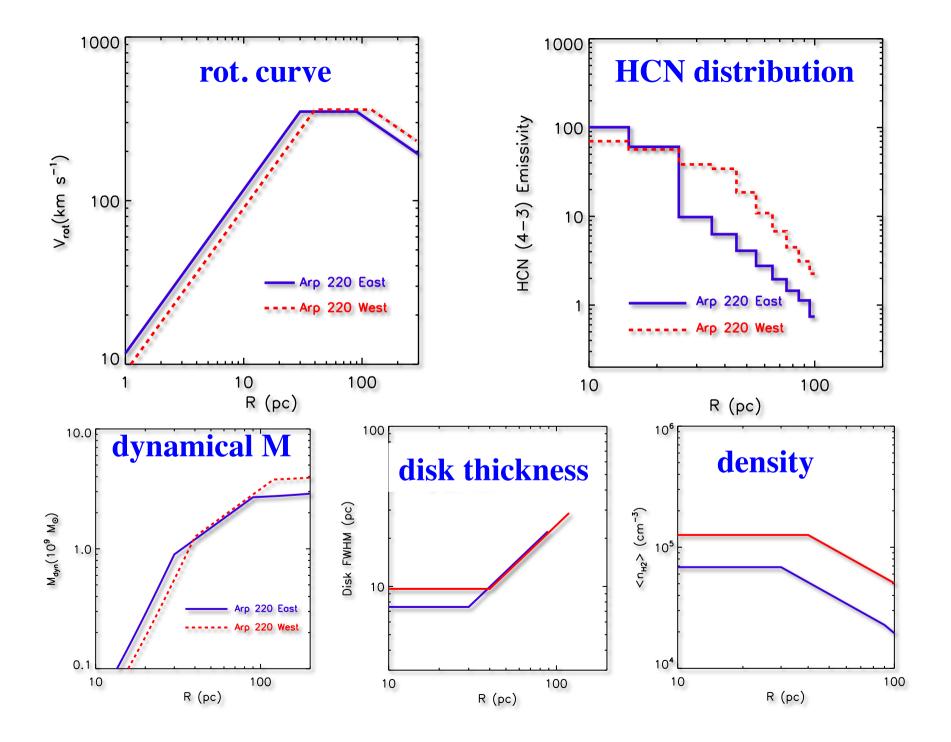
spatial – velocity strip maps along major axes

East

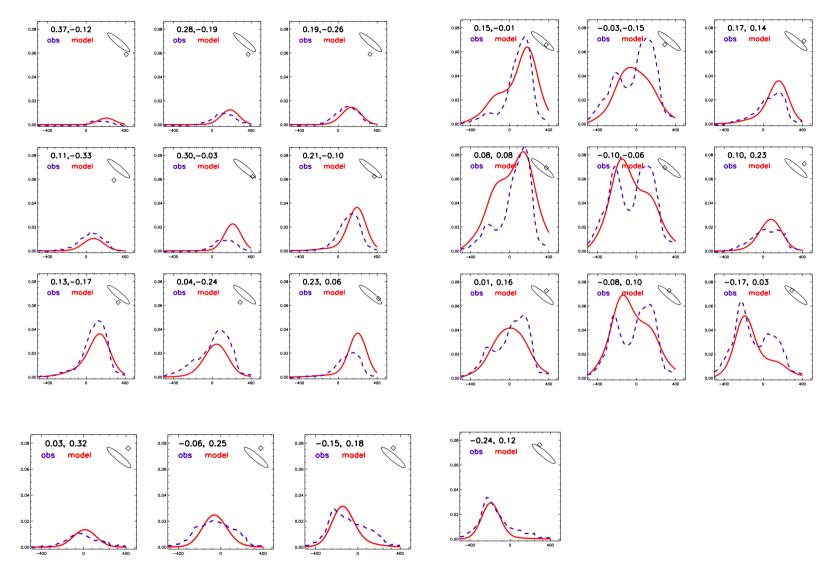
			Beam		De	convolv	\mathbf{ed}
Source		major "	minor "	PA	major "	minor "	${ m T}_B { m K}$
	band 7 co	ontinu	um				
Arp 220 W Arp 220 E Arp 220 W Arp 220 E	$\begin{array}{c} { m continuum} \\ { m continuum} \\ { m continuum} \\ { m continuum} \end{array}$	$\begin{array}{c} 0.60 \\ 0.60 \\ 0.52 \\ 0.52 \end{array}$	$0.42 \\ 0.42 \\ 0.39 \\ 0.39$	-32.0 -32.0 -27.2 -27.2	$\begin{array}{c} 0.28 \\ 0.37 \\ 0.36 \\ 0.38 \end{array}$	$\begin{array}{c} 0.27 \\ 0.27 \\ 0.24 \\ 0.32 \end{array}$	$33 \\ 11 \\ 34 \\ 9$
	band 9 co	ontinu	um				
Arp 220 W Arp 220 E	$\operatorname{continuum}$	$\begin{array}{c} 0.32\\ 0.32\end{array}$	$\begin{array}{c} 0.28\\ 0.28\end{array}$	-38.6 -38.6	$\begin{array}{c} 0.23\\ 0.30\end{array}$	$\begin{array}{c} 0.19\\ 0.24\end{array}$	$\begin{array}{c} 148 \\ 47 \end{array}$
	band '	7 line	S				
Arp220 W Arp220 E Arp220 W Arp220 E	CS (7 - 6) CS (7 - 6) HCN (4 - 3) HCN (4 - 3)	$\begin{array}{c} 0.60 \\ 0.60 \\ 0.52 \\ 0.52 \end{array}$	$\begin{array}{c} 0.42 \\ 0.42 \\ 0.39 \\ 0.39 \end{array}$	-32.0 -32.0 -27.2 -27.2	$\begin{array}{c} 0.49 \\ 0.40 \\ 0.57 \\ 0.58 \end{array}$	$0.43 \\ 0.35 \\ 0.41 \\ 0.45$	$10 \\ 7 \\ 39 \\ 21$

double Gaussian fits

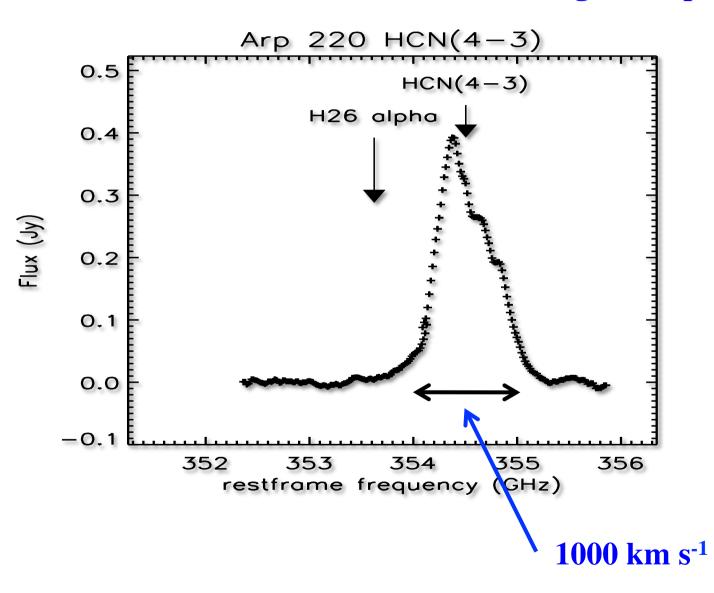
Dust : major axis radius ~ 0.12'' → 40 pc $T_B \sim 148 \& 47 \text{ K} (450 \mu \text{m})$ HCN : major axis radius ~ 0.25'' → 90 pc $T_B \sim 40 \text{ K}$ kinematic modeling


use kinematic deconvolution algorithm

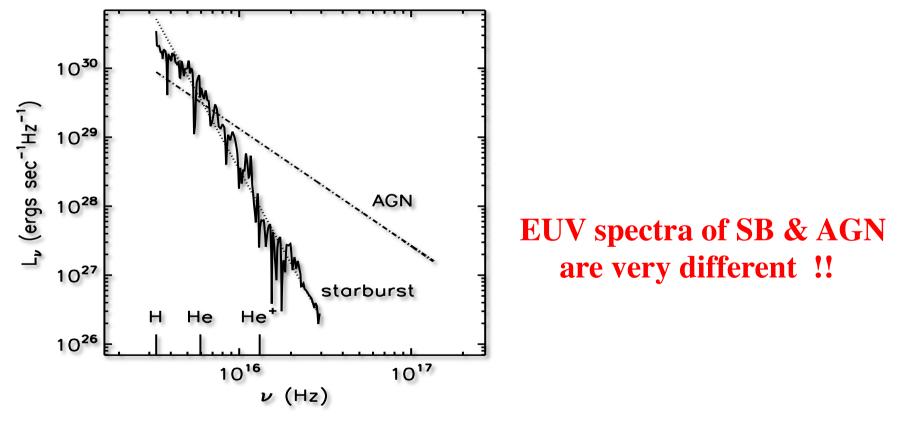
Scoville, Young & Lucy '83


if vel. field known,
 use observed line profiles
 super resolution much better than beam width

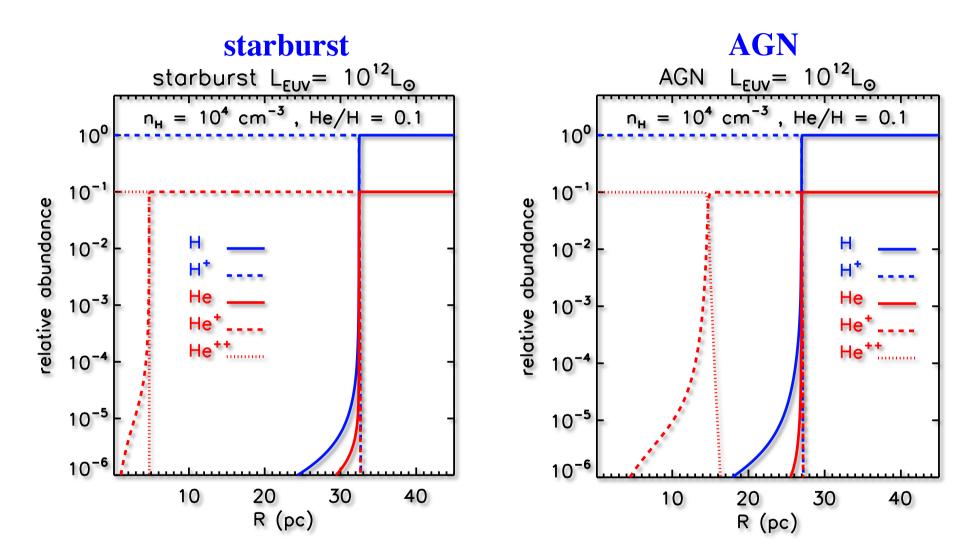
solve for rot. curve and emissivity (r) which give best fit between obs. and model line profiles


similar to doppler radar imaging of planets

Arp 220 East observed and model spectra



...diagnosing AGN vs Starbursts in dust obscured sources how to tell AGN vs SB ?? ALMA Band 7 -- 350 GHz integrated spectra


diagnosing AGN vs Starburst Power

long standing issue with ULIRGs – AGN vs SB ?? ALMA can discriminate !!

H vs He⁺ submm recomb. lines Scoville & Murchikova '13 (ApJ)

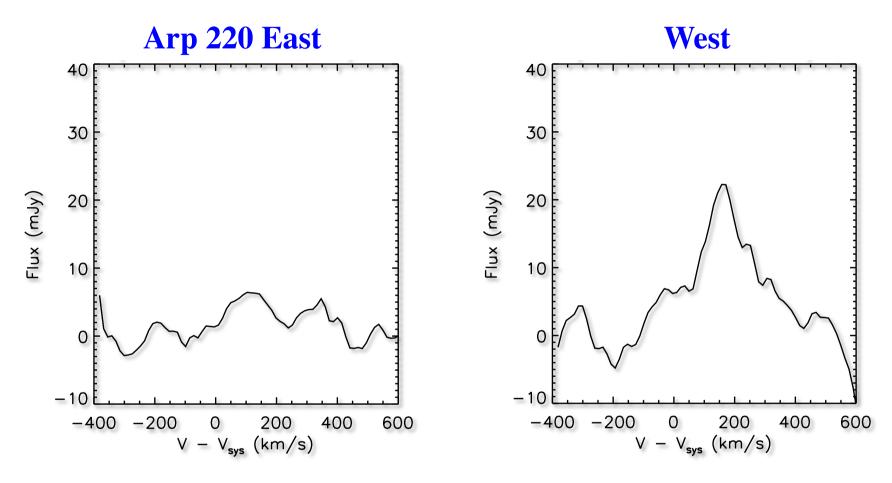
ionization equilibrium :

→ He⁺⁺ / H⁺ changes by 20x

relative strength of HI & HeII submm lines

quite independent of n_e & T_e

don't expect maser amplification


Ines fluxes JUV luminosity & UV hardness

$_{\rm n\alpha}^{\rm HI}$	$ \frac{ \nu}{ m GHz} $	$\begin{array}{c} \text{HeII } \mathbf{n}\alpha \\ \mathbf{n}\alpha \end{array}$	$ \nu ({ m GHz}) { m GHz} $	$\Delta u \ ({ m GHz}) \ { m GHz}$	$\epsilon_{HI} \exp \sec^{-1} \mathrm{cm}^3$	$\epsilon_{HeII} \exp \sec^{-1} \mathrm{cm}^3$
20	764.230	32	766.940	-2.710	1.21×10^{-30}	4.45×10^{-30}
21	662.404	34	641.108	21.296	9.05×10^{-31}	3.09×10^{-30}
22	577.896	35	588.428	-10.531	6.85×10^{-31}	2.59×10^{-30}
23	507.175	37	499.191	7.985	5.25×10^{-31}	1.85×10^{-30}
24	447.540	38	461.286	-13.746	4.06×10^{-31}	1.57×10^{-30}
25	396.901	40	396.254	0.647	3.17×10^{-31}	1.15×10^{-30}
26	353.623	42	342.894	10.729	2.50×10^{-31}	8.47×10^{-31}
27	316.415	43	319.781	-3.366	1.99×10^{-31}	7.32×10^{-31}
28	284.251	45	279.432	4.818	1.60×10^{-31}	5.50×10^{-31}
29	256.302	46	261.787	-5.485	1.29×10^{-31}	4.79×10^{-31}
30	231.901	48	230.713	1.187	1.05×10^{-31}	3.67×10^{-31}
31	210.502	50	204.370	6.132	8.67×10^{-32}	2.83×10^{-31}
32	191.657	51	192.693	-1.036	7.18×10^{-32}	2.48×10^{-31}

HI and HeII submm lines w/i single ALMA obs.

Scoville & Murchikova '13 (ApJ)

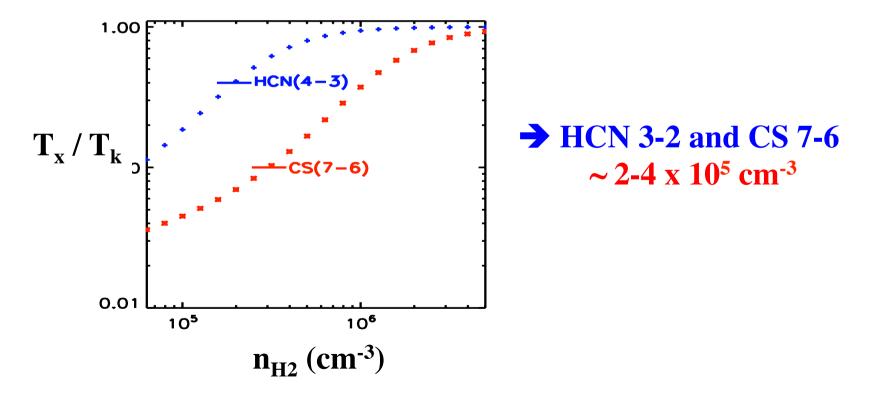
H 26α – a new probe of dust obscured SF !!

H 26α : 4 Jy km/s

low-n recomb. line flux \rightarrow HII emission measure (n² x volume) \rightarrow Lyc v 4 Jy km/s \rightarrow 140 M_{\odot} / yr

how much does α_{CO} change in ULIRGs ??

	$S_{2-1}\Delta V$	$S_{1-0}\Delta V$	ISM(CO)	ISM(dust)
			$10^9 { m M}_{\odot}$	$10^9 { m M}_{\odot}$
East West	$\begin{array}{c} 120 \\ 187 \end{array}$	$30 - 46 \\ 47 - 72$	$3.9 - 6.0 \\ 6.0 - 9.2$	$2.0 \\ 4.2$
			1	
		υ	ising Galactic	α _{CO}


Arp 220 - CO and Dust Masses

→ CO-to-H₂ conversion factor only different by 2-3x

densities from excitation of HCN (4-3) and CS (7-6) :

for optically thin lines, $n_{H2 \text{ crit}} > A/\langle \sigma v \rangle$ for thick lines, $A \rightarrow A \beta_{escape} \sim A/\tau \quad w/\tau \alpha A$

 $\Rightarrow n_{H2 \text{ crit}} > A\beta / \langle \sigma v \rangle \Rightarrow \text{reduced by } \tau$ $\Rightarrow n_{H2 \text{ crit}} \text{ indep. of } A !!$

Arp 220 nuclei at radiation pressure limit for dust Scoville 2001, 2003, Thompson+ 2005, Murray+3005

for self-gravitating sphere or disk,

 $f_{rad} / g = \varkappa/c \Sigma_L / 4 \pi G \Sigma_M > 1 \text{ if}$ $\Sigma_L / \Sigma_M \text{ or } L/M > 500 L_{\odot} / M_{\odot}$

Arp 220 - L / M ~ $2x10^{12}$ / $4x10^9 = 500 L_{\odot}$ / M_{\odot}

→ self-regulating SB

Edd. ratio increases to smaller r since rad. is harder

ULIRGs w/ ALMA :

probe ISM mass using RJ dust continuum optically thin

use line profile modeling for super-resolution

radii ~ 25 – 50 pc !! , M ~ 2-4x10⁹ M_{\odot} , mostly gas densities ~ 10⁵ cm⁻³ (from dust, HCN, CO and grav.)

ALMA is revolutionary !!