HOBYS and W43, two more steps toward a Galaxy-wide understanding of (high-mass) star formation

Frédérique Motte (AIM Paris-Saclay)

With the consortia of

- the HOBYS Herschel Key Program « the Herschel imaging survey of OB Young Stellar objects »
- the W43-HERO IRAM Large program « Origin of molecular cloud and star formation in W43 »

November 12th, 2014

Our knowledge of SF in "filaments"

Gould Belt clouds observations & simulations:

- 1. MHD turbulent shocks build-up filaments.
- 2. Gravitationally unstable filaments, for $M_{line} > 2c_s^2/G$, fragment.
- \Rightarrow Filaments are the link between clouds and prestellar cores.
- \Rightarrow Their threshold of instability equals the SF threshold of Av > 8 mag.

But...

- 1. Cloud collision and/or global collapse create denser filaments/ridges
- 2. Filaments are complex bundles/braids of fibers.
- \Rightarrow Stars could be forming at the same time as filaments/clumps.

from a mass reservoir larger than pre-stellar cores.

November 12th, 2014

HOBYS, the Herschel imaging survey of OB Young Stellar objects

esa

- **50 researchers from 10 institutes**
- Management team: P. André, J. di Francesco, F. Motte, S. Pezzuto, D. Ward-Thompson
- Special credit to: S. Bontemps, P. Didelon, A. Gusdorf, M. Hennemann, T. Hill, F. Louvet, A. Men'shchikov, V. Minier, Q. Nguyen-Luong, N. Schneider, A. Zavagno

November 12th, 2014

SPIRE

SAG3

W43-HERO IRAM LP, tracking the origin of molecular cloud and star formation in W43

see http://www.iram-institute.org/EN/ content-page-292-7-158-240-292-0.html

Frédérique Motte & Quang Nguyen Luong
(AIM, Paris Saclay)(CITA, Toronto)With: P. Schilke, P. Carlhoff, F. Louvet, S. Bontemps, N. Schneider

And observers from the W43/ATLASGAL consortium: Schuller, Csengeri et al.

<u>With modelers of molecular cloud formation:</u> P. Hennebelle, S. Glover, F. Heitsch, E. Vazquez-Semadeni, R. Banerjee, ...

November 12th, 2014

Linking cloud structure/kinematics & star formation activity

Main open questions:

- 1) Origin of molecular cloud complexes and their high-density structures.
- 2) Link of the high-mass star formation and star formation efficiency to the cloud concentration and dynamics.

The 9 closest cloud complexes forming high-mass stars.

- ➢ 50-100 pc at d = 0.7-3 kpc
- \succ M_{cloud} = 2 10⁵ 1 10⁶ M_o
- ▶ Forming up to 20 M_{\odot} stars
- Herschel 70-500 μm

November 12th, 2014

The nearest cloud complex at the tip of the Galactic bar.

- ➤ 130 pc at d = 5.5 kpc
- \succ M_{cloud} = 8 10⁶ M_{\odot}
- Forming up to 50-100 M_{\odot} stars
- HI, CO, IRAM, Herschel, Spitzer, ALMA

HOBYS molecular cloud complexes, pieces of the nearest spiral arms of the MW

Sagitarius arm

Centaurus arm

on Spur Local arm

November 12th, 2014

HOBYS molecular cloud complexes, pieces of the nearest spiral arms of the MW

HOBYS mol. complexes: 10⁵ - 10⁶ M_☉ 50 - 100 pc

Catalog by S. Bontemps (see Schneider et al. 2012) Built from NIR extinction and CO maps.

Orion in Gould Belt: 10⁵ M_☉ 50 pc W43 in Hi-GAL and W43-HERO: 7 10⁶ M_☉ 150 pc (Nguyen Luong et al. 2011b)

Sagitarius arm

Centaurus

Local/arm

OSUN

November 12th, 2014

Outline: HOBYS and W43, two more steps toward a Galaxy-wide understanding of (high-mass) star formation

- 1. Cloud structure, kinematics, and star formation in ridges/hubs
- 2. "Clusters" of young stellar objects and SFR/SFE estimates
- 3. Formation of the W43 molecular cloud complex

High-mass star formation: from clouds and protostars

Different cloud structures form low- & high-mass stars

- Disorganized network of filaments versus single dominating ridges
- High-mass stars form preferentially in ridges, high-column density (Av > 100 mag), elongated cloud structures dominating their surrounding.

Ridges/Hubs are extreme clumps forming clusters of high-mass stars

- ~50% of the high-mass stars form in clusters within high-density elongated ridges, the other 50% form in spherical high-density hubs
- \Rightarrow Ridge/Hub definition: 5-10 pc³ /1 pc³ above 10⁴-10⁵ cm⁻³

We use the 100 A_v level to identify them but it is not a physical threshold.

See also Hill+ 2011, Nguyen Luong+ 2011, Hennemann+ 2012, Didelon+ 2014, ...

November <u>12th</u>, 2014

Most ridges/hubs should form by cloud global collapse

• Forced-fall (pressure-driven infall) of the DR21 ridge further fed by filaments.

Ridge are substructured and compressed clumps

Herschel Gould Belt survey: Filaments are Plummer-like (e.g. Palmeirim et al. 2013). Gomez & Vazquez-Semadeni 2014; Hennebelle priv. com.: Globally collapsing filaments tend to have steeper density profiles...

Similar density structure for the MonR2 hub (Didelon et al. 2014). Consistent with PDF studies of Russeil et al. 2013; Rayner et al. in prep.

November 12th, 2014

Ridges are bundles/braids of filaments/layers

Velocity shears onto high-mass protostellar cores

Organized 0.05 pc flows in $H^{13}CO^+$ or N_2H^+ displaying shears at the location of high-mass protostars (Csengeri et al. 2011a, 2011b).

Consistent with numerical simulations by Smith et al. 2011, 2012.

Consistent with shock tracers

(Csengeri et al. 2011b; Jiménez-Serra et al. 2011; Nguyen Luong et al. 2013; Sanhueza et al. 2013; ...)

November 12th, 2014

F. Motte, SFast2014 @ E

Jec [J2000

\$2°22'20

20^h39^m00^s

59 Ro [J2000] JV)

0.002 beam

58^{*}

In ridges and hubs "gas reservoir" should replace "core": gas is accreted onto ridges/hubs and in turn onto protostars

Picture consistent with numerical simulations by Inoue & Fukui 2013, Gomez & Vazquez-Semadeni 2014...

Schneider,..., Hennebelle et al. 2010 -1-1 0 x (pc) 3.5892 (km/s)

t = 3.20 (Myrs)

November 12th, 2014

Outline: HOBYS and W43, two more steps toward a Galaxy-wide understanding of (high-mass) star formation

- 1. Cloud structure, kinematics, and star formation in ridges/hubs
- 2. "Clusters" of young stellar objects and SFR/SFE estimates
- 3. Formation of the W43 molecular cloud complex

Herschel/HOBYS measures "instantaneous" SFE/SFR

Making a **direct link** between protostars and their cloud, *Herschel* measures instantaneous SFE,

easier to compare with statistical models of SFR (e.g.Krumholz & McKee 2005; Padoan & Nordlund 2011; Hennebelle & Chabrier 2011, 2013; Federrath et al. 2012).

- Herschel or (sub)millimeter samples of protostars (lifetime ~10⁵ yr) (e.g. Motte et al. 2003; Nguyen Luong et al. 2011a; Louvet et al. 2014) → "Instantaneous" / "Present-day" SFR
- Spitzer sample of pre-main sequence stars (lifetime ~10⁶ yr) or effect of OB stars (depletion time 2 x 10⁶ yr) on the cloud (e.g. Heiderman et al. 2010; Kennicutt 1998)

→ "Integrated" / "Past" SFR

With both SFRs, one may constrain the history of star formation...

Nguyen Luong et al. 2011a

November 12th, 2014

Mini-starburst cluster in the G035.39-00.33 ridge

1200

Herschel: Nguyen-Luong et al. 2011a Contours: SiO from Jimenez-Serra et al. 2010

- Herschel census and SED (4µm-1mm):
- ⇒ 5 high-mass class 0 protostars or 20 protostars with 2 M_{\odot} on the main seq.

Assumptions:

- ✓ <u>Core-to-star mass efficiency</u>: E ~
 20-40% in 0.1 pc 10⁶ cm⁻³ dense cores
- ✓ <u>Protostellar lifetime</u>: 10⁵ yr of IRquiet/Class0-like massive protostars
- ✓ Fast episode of cloud formation: 1-3
 10⁶ yr
- ✓ <u>Kroupa IMF</u> applied to the ridge

⇒ A mini-burst of SF (SFE ~20%, SFR~300 M_{\odot}/Myr , 40 $M_{\odot}/yr/kpc^2$ within 8 pc²)

Ridges/hubs represent Galactic mini-starbursts

Caveats: Core-to-star formation efficiency assumed to be constant Extrapolation of a standard IMF to mini-starburst ridges

November 12th, 2014

Concentration of gas down to the "core" scales

- 0.02 pc high-mass protostellar cores
- Mass segregation
- CFE = Mass within protostellar cores / Mass of the surrounding clump

Are thresholds and constant SFE correct?

Lada et al. (2010, 2012) relation between SFR and cloud mass implicitely assumes a constant SFE in regions above the SF threshold (n_{H2} > 1.5 10⁴ cm⁻³). See also Evans et al. 2014, André et al. 2014,... and SFR theoretical models.

IRAM Plateau de Bure census of protostars in the W43-MM1 ridge

- finds the most massive class0-like protostar: N1a: 1100 M_{\odot} 0.03 pc

investigates SFEwithin subregionsA, B, C, D

Are thresholds and constant SFE correct?

SFE measured within the W43-MM1 ridge and in numerical simulations increases with n_{H2} (Louvet et al. 2014).

In contradiction with Lada's 2010/2012 prescription...

In agreement with previous CFE studies (Bontemps et al. 2010, Palau et al. 2013)

⇒ Cloud density sets SFE and the mass of the most massive stars that will form.

Constraining statistical theories of SFR on W43-MM1...

- Statistical models of SFR suggests saturation at low virial numbers (Krumholz & McKee 2005; Padoan & Nordlund 2011; Hennebelle & Chabrier 2011, 2013; Federrath et al. 2012).

- Inconsistent with observations in W43.

=> Multi-freefall models (Hennebelle et al. 2012; Federrath et al. 2012) with more realistic cloud structure should be more adequate...

November 12th, 2014

Outline: HOBYS and W43, two more steps toward a Galaxy-wide understanding of (high-mass) star formation

- 1. Cloud structure, kinematics, and star formation in ridges/hubs
- 2. "Clusters" of young stellar objects and SFR/SFE estimates
- 3. Formation of the W43 molecular cloud complex

W43, a cloud agglomeration ahead of the Galactic bar

Velocity range: (80-110 km/s) but coherent
 Large and massive: 130 pc, 8 10⁶ M_☉
 ⇒ Close to Virial equ., stable against shears
 (Nguyen Luong+ 2011b; Carlhoff+ 2013)

- High concentration of gas and high SFR

⇒ Located in front of the Galactic long bar (Nguyen Luong+ 2011b), consistent with models of Wozniak+2007; Renaud et al. in prep.

- ¹²CO gas is flowing along the Galactic arm toward W43

 \Rightarrow Formed by molecular cloud collision

(Motte+ 2014; Onishi+ 2015)

November 12th, 2014

Searching for an HI surface density threshold

Saturation of the HI surface density generally observed (e.g. Blitz & Rosolowsky et al. 2006; Bigiel et al. 2008; Barriault et al. 2010; Lee et al. 2012) and predicted by equilibrium models (Krumhloz et al. 2009) at $\Sigma_{HI} \sim 5-15 M_{\odot}/pc^2$

W43, with its well-defined symmetrical envelope of 270 pc could be the ideal place to investigate the atomic-to-molecular transition.

Radial diagram of the HI surface density

HI saturation generally found: $\Sigma_{\rm HI}$ ~ 5-15 $M_{\odot}/\rm pc^2$ In W43: $\Sigma_{\rm HI} \sim 36-82 \ {\rm M}_{\odot}/{\rm pc}^2$ - cloud formation is probably out of equilibrium (like in models of Glover et al. 2010) - several layers of HI gas are turning into H_2 .

(Motte, Nguyen Luong, Schneider et al. 2014)

November 12th, 2014

Conclusions, warning, and future work

Proposed steps toward SF in ministarburst ridges/hubs

- 1. MHD turbulent shocks build-up filaments that gently accrete from their surrounding.
- 2. Gravity braids filaments in a collapsing clump attracting more filaments. Stars and filaments simultaneously form and grow. In these environments protostellar accretion is non-local & anisotropic.
- ⇒ HOBYS and W43-HERO results point toward linking highly-dynamical molecular cloud formation to high-density clouds and intense star formation activity.
- Warning on the definition of a molecular cloud and thus its total mass, lifetime, global SFE...
- We still lack high-angular resolution and kinematical data.
- We would need to have SF models more adequate for ministarburst ridges.