

The line mass power spectrum of interstellar filaments: A possible link to the prestellar CMF

Andre', Ph., Arzoumanian, D. and SAG3 members

Arabindo Roy CEA Saclay, ORISTARS

Physical significance of filamentary structures

Evolution of perturbation modes in filaments

The isothermal fragmentation leads to a characteristic mass scale

Isothermal fragmentation of filaments

The isothermal fragmentation leads to a characteristic mass scale

Peak of the CMF coincides with the gravitational fragmentation scale ~ 0.6 M_{sol} with a width of a factor of 2

Andre' et al., 2010, Könyves et al., 2010 c.f., Andre' et al., 2014, PPVI

Selection of region & filaments detection

Filament identification

- Morphological component analysis (MCA) → decomposes into wavelet and curvelet basis [Starck et al., 2003]
- DisPerSE algorithm on curvelet image to trace crest line along filament [Sousbie et al., 2011, Arzoumanian et al., 2011]

Line mass fluctuations along the long axis of a filament

Line mass fluctuations along the long axis of a filament

Line mass fluctuations along the long axis of a filament

An example of subcritical filament

Roy, Andre', Arzoumanian et. al 2014, to be submitted

Column density fluctuations along z axis

Nature of velocity and density perturbations in filaments

Subcritical or marginally supercritical filaments have subsonic to transonic velocity dispersion Arzoumanian et al. 2013

Nature of velocity and density perturbations in filaments

to velocity perturbations

 $(\delta v/c_s) \alpha (\delta \rho/\rho)$

Hacar et al. 2011

filaments have subsonic to transonic velocity dispersion

Arzoumanian et al. 2013

Statistical properties of line mass fluctuations

Line mass fluctuations

Power spectrum (PS): $P(s) = \langle I(s)I^*(s) \rangle$

Statistical properties of line mass fluctuations

Roy, Andre', Arzoumanian et. al 2014, to be submitted

Statistical properties of line mass fluctuations

Characteristic power spectrum slope for filaments

Characteristic power spectrum slope for filaments

Link to prestellar core mass function ?

Perturbed M_{line} field characterized by $P(s) \alpha s^{\alpha}$

Variance:
$$\sigma_M^2 = \frac{1}{L} \int |\delta_M(x)|^2 dx = \frac{L}{2\pi} \int_{-k_M}^{k_M} |\delta_k(k')|^2 dk'$$
Pdf:
$$f(M, \ \delta > \delta_c) = \int_{\delta_c}^{\infty} \frac{1}{\sqrt{2\pi\sigma_M^2}} \exp\left(-\frac{\delta^2}{2\sigma_M^2}\right) d\delta$$

Mass function (Press-Schechter formalism):

$$\frac{dN}{dM} = -2 \frac{M_{\text{line}}}{M} \frac{df(M, \ \delta > \delta_c)}{dM}$$
$$= -\frac{M_{\text{line}}}{M} \frac{\delta_c}{\sqrt{\pi}} \exp\left(-\frac{\delta_c^2}{2\sigma_M^2}\right) \frac{1}{\sigma_M^3} \frac{d\sigma_M^2}{dM}$$

Adopted power spectrum slope of-1.5

c.f., Hennebelle & Chabrier 2008

How this scenario fits with observations?

~75% of the prestellar cores are along supercritical filaments in Aquila

Andre' et al., 2010 & Konyves et al., 2010 more to come from Konyves et al., 2014

- Possibly, supercritical filaments in Aquila back in time (few 10⁴ years) were seeded with hierarchical density perturbations due to transonic turbulence
- Initial memory retained in the later part of the evolution

Standard deviation of line-mass fluctuations

Conclusions

- Power spectrum slope of line mass fluctuations has a characteristic value around 1.7
- Interstellar turbulence seeds the initial line mass fluctuations along filaments
- Suggests that supercritical filaments collapse into a population of cores that has a mass spectrum similar to the Salpeter at the high mass end
- Possibility that the density perturbations due to turbulence is prerequisite for generating a Salpeter-like mass function